精英家教网 > 高中数学 > 题目详情
(理科)设函数f(x)的定义域为R,若存在常数 M>0,使|f(x)|≤M|x|对一切实数 x均成立,则f(x)为β函数.现给出如下4个函数:(1)f(x)=0;f(x)=x2;f(x)=
2
(sinx+cosx);f(x)=
x
x2+x+1
.其中是β函数的序号是______.
由题意
对于(1)f(x)=0,显然对任意常数M>0,均成立,故f(x)为β函数;
对于(2),|f(x)|≤M|x|,显然不成立,故其不是β函数;
对于(3),f(x)=
2
(sinx+cosx)
,由于x=0时,|f(x)|≤M|x|不成立,故不是β函数;
对于(4),f(x)=
x
x2+x+1
,|f(x)|=
1
x2+x+1
|x|≤
4
3
|x|,故对任意的M≥
4
3
,都有|f(x)|≤M|x|,故是β函数;
故答案为:(1)(4)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)设函数f(x)=lnx-x+1,
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:lnx≤x-1;
(Ⅲ)证明:
ln22
22
+
ln32
32
+…+
lnn2
n2
2n2-n-1
2(n+1)
(n∈N+,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)设函数f(x)的定义域为{x|x≠0},值域为R且同时满足下列条件:
(1)对于任意非零实数x1,x2,都有f(x1x2)=f(x1)+f(x2);
(2)对于任意正数x1,x2,且x1≠x2,都有
f(x1)-f(x2x1-x2
>0

出符合上述条件的一个函数f(x)
=log2|x|(答案不唯一)
=log2|x|(答案不唯一)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)设函数f(x)的定义域为R,若存在常数 M>0,使|f(x)|≤M|x|对一切实数 x均成立,则f(x)为β函数.现给出如下4个函数:(1)f(x)=0;f(x)=x2;f(x)=
2
(sinx+cosx);f(x)=
x
x2+x+1
.其中是β函数的序号是
(1)(4)
(1)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理科)设函数f(x)的定义域为R,若存在常数 M>0,使|f(x)|≤M|x|对一切实数 x均成立,则f(x)为β函数.现给出如下4个函数:(1)f(x)=0;f(x)=x2;f(x)=
2
(sinx+cosx);f(x)=
x
x2+x+1
.其中是β函数的序号是______.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省部分重点中学高三(上)起点数学试卷(文理合卷)(解析版) 题型:解答题

(理科)设函数f(x)=lnx-x+1,
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:lnx≤x-1;
(Ⅲ)证明:

查看答案和解析>>

同步练习册答案