精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(
13
x+2)x2

(1)求f(x)的导数f'(x);
(2)求f(x)在闭区间[-1,1]上的最大值与最小值.
分析:(1)利用公式求函数的导数,
(2)求出导数等于0时x的值,代入函数求出函数值,再求出端点值,比较极值与端点值的大小得出最大值和最小值.
解答:解:(1)f(x)=(
1
3
x+2)x2=
1
3
x3+2x2
.(1分)
求导得f'(x)=x2+4x.(4分)
(2)令f'(x)=x2+4x=x(x+4)=0,解得:x=-4或x=0.(6分)
列表如下:
x -1 (-1,0) 0 (0,1) 1
f'(x) - 0 +
f(x)
5
3
0
7
3
(10分)
所以,f(x)在闭区间[-1,1]上的最大值是
7
3
,最小值是0.(13分)
点评:该题考查函数求导,以及极值和最值的求解,属于简单题,基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案