精英家教网 > 高中数学 > 题目详情

【题目】下列命题中是错误命题的个数有(  )

(1)若命题p为假命题,命题为假命题,则命题“”为假命题;

(2)命题“若,则”的否命题为“若,则”;

(3)对立事件一定是互斥事件;

(4)为两个事件,则P(A∪B)=P(A)+P(B);

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

(1)易知p假q真,利用复合命题间的关系即可知(1)的正误;

(2)写出命题“若xy=0,则x=0或y=0”的否命题,再判断(2)的正误即可;

(3)对立事件一定是互斥事件,互斥事件不一定是对立事件;

(4)A、B为两个互斥事件,则P(A∪B)=P(A)+P(B)

(1)若命题p为假命题,命题¬q为假命题,则p假q真,故pq真,故(1)错误;

(2)命题“若xy=0,则x=0或y=0”的否命题为“若xy≠0,则x0且y0”,故(2)错误;

(3)对立事件一定是互斥事件,互斥事件不一定是对立事件,故(3)正确;

(4)A、B为两个互斥事件,则P(A∪B)=P(A)+P(B),故(4)不正确;

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线的右焦点为,右顶点为.

(1)求双曲线的方程;

(2)若直线与双曲线恒有两个不同的交点,且(其中为坐标原点),求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知圆满足:

y轴所得弦长为2

x轴分成两段圆弧,其弧长的比为31

圆心到直线lx-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为直角梯形,平面 的中点,

1求证:平面

2,求点到平面 的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x﹣cosx,{an}是公差为 的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:mx2+3my2=1(m>0)的长轴长为 ,O为坐标原点.
(1)求椭圆C的方程和离心率.
(2)设点A(3,0),动点B在y轴上,动点P在椭圆C上,且点P在y轴的右侧.若BA=BP,求四边形OPAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为 ,曲线C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.
(Ⅰ)求线段OQ的长;
(Ⅱ)设不经过点P和Q的动直线l2:x=my+b交曲线C于点A和B,交l1于点E,若直线PA,PE,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且过点 .若点M(x0 , y0)在椭圆C上,则点 称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试求△AOB的面积.

查看答案和解析>>

同步练习册答案