精英家教网 > 高中数学 > 题目详情

【题目】已知各项均不相等的等差数列{an}的前四项和S4=14,且a1 , a3 , a7成等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{ }的前n项和,若Tn≤λan+1n∈N*恒成立,求实数λ的最小值.

【答案】解:(I)设公差为d,由已知得: , 即
解得:d=1或d=0(舍去),
∴a1=2,
故an=2+(n﹣1)=n+1;
(II)∵ =
∴Tn=
∵Tn≤λan+1n∈N*恒成立,即 ≤λ(n+2),λ≥ n∈N*恒成立,
=
∴λ的最小值为
【解析】(I)设出此等差数列的公差为d,根据等差数列的前n项和公式化简S4=14得到关于首项和公差的关系式,又a1 , a3 , a7成等比数列,根据等比数列的性质得到关于首项和公差的另一关系式,两关系式联立即可求出首项和公差,根据首项和公差写出等差数列{an}的通项公式即可;(II)把(I)中求出的数列{an}的通项公式代入数列中,根据 ,列举出数列的前n项和的每一项,抵消后得到Tn的通项公式,将求出的Tn的通项公式和an+1的通项公式代入已知的不等式中,解出λ大于等于一个关系式,利用基本不等式求出这个关系式的最大值,即可得到实数λ的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查甲、乙两个网站受欢迎的程度随机选取了14统计上午8:00~10:00各自的点击量得到如图所示的茎叶图,根据茎叶图回答下列问题.

(1)甲、乙两个网站点击量的极差分别是多少?

(2)甲网站点击量在[10,40]间的频率是多少?

(3)甲、乙两网站哪个更受欢迎?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合P的元素个数为个且元素为正整数,将集合P分成元素个数相同且两两没有公共元素的三个集合ABC,即 ,其中 若集合ABC中的元素满足 2,则称集合P为“完美集合”.

若集合22345,判断集合P和集合Q是否为“完美集合”?并说明理由;

已知集合x345为“完美集合”,求正整数x的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M,直线lA为直线l上一点.

,过A作圆M的两条切线,切点分别为PQ,求的大小;

若圆M上存在两点BC,使得,求点A横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cos(α﹣β)=﹣ ,cos(α+β)= ,且(α﹣β)∈( ,π),(α+β)∈( ,2π),则cos2α=(
A.﹣1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x+ sin2x.
(1)求函数f(x)的单调递减区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f( )= ,△ABC的面积为3 ,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函f(x)=ax2﹣ex(a∈R). (Ⅰ)a=1时,试判断f(x)的单调性并给予证明;
(Ⅱ)若f(x)有两个极值点x1 , x2(x1<x2).
(i) 求实数a的取值范围;
(ii)证明:﹣ . (注:e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 + =1(a>b>0)的左右焦点分别为F1 , F2 , 点D在椭圆上,DF1⊥F1F2 =2 ,△DF1F2的面积为 . (Ⅰ)求该椭圆的标准方程;
(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案