精英家教网 > 高中数学 > 题目详情
设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-2.
(1)求f(0);
(2)证明f(x)是奇函数;
(3)试问在x∈[-3,3]时f(x)是否有最大、最小值?如果有,请求出来,如果没有,说明理由;
(4)解不等式
1
2
f(x2)-f(x)>
1
2
f(3x)
分析:(1)先利用赋值法求出f(0)的值,
(2)欲证明f(x)是奇函数,即证明f(x)+f(-x)=0,再在题中条件中令y=-x即得;
(3)先利用单调性的定义证明(x)在R上是减函数,任取x1、x2∈R,且x1<x2,证明即f(x1)>f(x2),;再利用此结论得f(x)在[-3,3]上的最大值是f(-3),最小值为f(3).故只要求出f(3)和f(-3)即可.
(4)由
1
2
f(x2)-f(x)>
1
2
f(3x)
,f(x2)-f(3x)>2f(x),由已知得:f[2(x)]=2f(x)∴f(x2-3x)>f(2x),由(2)中的单调性转化为x2-3x<2x.最后按照二次不等式两根的大小解不等式即可.
解答:证明:(1)由f(x+y)=f(x)+f(y),
得f[x+(-x)]=f(x)+f(-x),
∴f(x)+f(-x)=f(0).
又f(0+0)=f(0)+f(0),∴f(0)=0.
(2)从而有f(x)+f(-x)=0.∴f(-x)=-f(x).
∴f(x)是奇函数.
(3)任取x1、x2∈R,且x1<x2
则f(x1)-f(x2)=f(x1)-f[x1+(x2-x1)]=f(x1)-[f(x1)+f(x2-x1)]=-f(x2-x1).
由x1<x2,∴x2-x1>0.∴f(x2-x1)<0.
∴-f(x2-x1)>0,即f(x1)>f(x2),
从而f(x)在R上是减函数.
由于f(x)在R上是减函数,
故f(x)在[-3,3]上的最大值是f(-3),
最小值为f(3).由f(1)=-2,
得f(3)=f(1+2)=f(1)+f(2)
=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)
=3×(-2)=-6,f(-3)=-f(3)=6.
∴最大值为6,最小值为-6.
(4)由
1
2
f(x2)-f(x)>
1
2
f(3x)
,f
(x2)-f(3x)>2f(x),
由已知得:f[2(x)]=2f(x)∴f(x2-3x)>f(2x),
由(2)中的单调性转化为x2-3x<2x.即x2-5x<0,
∴x∈(0,5).
点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,
1
2
,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x0<a,则f(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(数学公式)>数学公式[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆市铁人中学高三(上)第二次段考数学试卷(解析版) 题型:选择题

下列说法中,正确的是( )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x<a,则f(x)<0.
A.①④
B.①④⑤
C.②③④
D.①⑤

查看答案和解析>>

同步练习册答案