精英家教网 > 高中数学 > 题目详情

【题目】口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件取出的两球同色取出的2球中至少有一个黄球取出的2球至少有一个白球取出的两球不同色取出的2球中至多有一个白球”.下列判断中正确的序号为________.

为对立事件;②是互斥事件;③是对立事件:④;⑤.

【答案】①④

【解析】

中,由对立事件定义得为对立事件;有中,有可能同时发生;在中,有可能同时发生;在中,CE;在,从而BC).

口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球,

事件 “取出的两球同色”, “取出的2球中至少有一个黄球”,

“取出的2球至少有一个白球”, “取出的两球不同色”, “取出的2球中至多有一个白球”,

①,由对立事件定义得为对立事件,故正确;

②,有可能同时发生,故不是互斥事件,故错误;

③,有可能同时发生,不是对立事件,故错误;

④,CE

从而CE,故正确;

⑤,,从而BC),故错误.

故答案为:①④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某农科所发现,一种作物的年收获量(单位:)与它“相近”作物的株数具有相关关系(所谓两株作物“相近”是指它们的直线距离不超过),并分别记录了相近作物的株数为时,该作物的年收获量的相关数据如下:

(1)根据研究发现,该作物的年收获量可能和它“相近”作物的株数有以下两种回归方程:,利用统计知识,结合相关系数比较使用哪种回归方程更合适;

(2)农科所在如下图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每个小正方形的面积为,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以(1)中选择的回归方程计算所得数据为依据

参考公式:线性回归方程为,其中

相关系数

参考数值:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.

(Ⅰ)求 的值;

(Ⅱ)估计该校高三学生体质测试成绩的平均数和中位数

(Ⅲ)若从成绩在的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴为极轴建立极坐标系,曲线的极坐标为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线和曲线有三个公共点,求以这三个公共点为顶点的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正整数数列中,由1开始依次按如下规则,将某些整数染成红色,先染1;再染3个偶数2,4,6;再染6后面最邻近的5个连续奇数7,9,11,13,15;再染15后面最邻近的7个连续偶数16,18,20,22,24,26,28;再染此后最邻近的9个连续奇数29,31,…,45;按此规则一直染下去,得到一红色子数列:1,2,4,6,7,9,11,13,15,16,……,则在这个红色子数列中,由1开始的第2019个数是( )

A. 3972 B. 3974 C. 3991 D. 3993

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的四棱锥底面为矩形 的中点为, 异面直线所成的角为 平面.

1证明 平面

2求二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示在平面直角坐标系中,椭圆的中心在原点在椭圆且离心率为.

1求椭圆的标准方程;

2动直线交椭圆 两点 是椭圆上一点,直线的斜率为,且 是线段上一点,圆的半径为,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(α)=.

(1)化简f(α);

(2)若f(α)=,且<α<,求cosα-sinα的值;

(3)若α=-,求f(α)的值.

查看答案和解析>>

同步练习册答案