精英家教网 > 高中数学 > 题目详情

【题目】一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为( )元

A.4500B.4000C.2880D.2380

【答案】B

【解析】

根据题意,先求得正四棱柱的底面棱长和高,由体积公式即可求得正四棱柱的体积.减去文物的体积,即可求得罩内的气体体积,进而求得所需费用.

由题意可知, 文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3

所以由正方形与圆的位置关系可知,底面正方形的边长为

文物高1.8,文物顶部与玻璃罩上底面至少间隔0.2

所以正四棱柱的高为

则正四棱柱的体积为

因为文物体积为

所以罩内空气的体积为

气体每立方米

所以共需费用为

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,,规定90分及以上为合格:

(1)求图中a的值;

(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;

(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点AB.

)求椭圆M的方程;

)若,求 的最大值;

)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.C,D和点 共线,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

1)求的单调区间;

2)在函数的图象上取两个不同的点,令直线AB的斜率

k,则在函数的图象上是否存在点,且,使得?若存

在,求AB两点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.

1)求PX=2);

2)求事件X=4且甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)试判断函数的单调性;

2)若函数上有且仅有一个零点,

①求证:此零点是的极值点;

②求证:.

(本题可能会用到的数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是(

A.若随机变量服从正态分布,则

B.已知直线平面,直线平面,则的必要不充分条件;

C.若随机变量服从二项分布:,则

D.已知直线经过点,则的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂产生的废气经过过滤后排放,规定排放时污染物的残留含量不得超过1%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为:为正常数,为原污染物数量).若前5个小时废气中的污染物被过滤掉了90%,那么要能够按规定排放废气,至少还需要过滤(

A. 小时B. 小时C. 5小时D. 小时

查看答案和解析>>

同步练习册答案