精英家教网 > 高中数学 > 题目详情

【题目】已知cos(75°+α)=α是第三象限角,

(1)求sin(75°+α) 的值.

(2)求cos(α-15°) 的值.

(3)求sin(195°-α)+cos(105oα)的值.

【答案】(1)-;(2)-; (3).

【解析】

试题分析:

(1)由题意可得是第四象限角,结合同角三角函数基本关系可得

(2)利用诱导公式和(1)的结论可得cos(α-15°) 的值为

(3)由题意结合诱导公式可得:sin(195°-α) +cos(105oα)=-sin[90°-(75°+α)] -cos(75°+α).

试题解析:

(1)cos(75°+α)=>0,α是第三象限角,

75°+α是第四象限角,

sin(75°+α)=

(2)cos(α-15°)= cos[90°-(75°+α)]= sin(75°+α)= -

(3)sin(195°-α) +cos(105oα)

sin[180°+(15°-α)]+cos[180o o-(75°+α)]

=-sin(15°-α) -cos(75°+α)

=-sin[90°-(75°+α)] -cos(75°+α)

=-2cos(75°+α)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某礼品店要制作一批长方体包装盒,材料是边长为的正方形纸板.如图所示,先在其中相邻两个角处各切去一个边长是的正方形,然后在余下两个角处各切去一个长、宽分别为的矩形,再将剩余部分沿图中的虚线折起,做成一个有盖的长方体包装盒.

(1)求包装盒的容积关于的函数表达式,并求函数的定义域;

(2)为多少时,包装盒的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(题文)“你低碳了吗?”这是某市为倡导建设节约型社会而发布的公益广告里的一句话,活动组织者为了了解这则广告的宣传效果,随机抽取了120名年龄在,…,的市民进行问卷调查,由此得到的样本的频率分布直方图如图所示.

(1)根据直方图填写频率分布统计表;

(2)根据直方图,试估计受访市民年龄的中位数(保留整数);

(3)如果按分层抽样的方法,在受访市民样本年龄在中共抽取5名市民,再从这5人中随机选2人作为本次活动的获奖者,求年龄在的受访市民恰好各有一人获奖的概率.

分组

频数

频率

18

0.15

30

0.2

6

0.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰的底边,高,点是线段上异于点的动点,点边上,且,现沿将△折起到△的位置,使,记 表示四棱锥的体积.

(1)的表达式;(2)为何值时, 取得最大,并求最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数的最大值;

2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;

(3)当 时,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数>0, ≠1, ≠﹣1),是定义在(﹣1,1)上的奇函数.

(1)求实数的值;

(2)当=1时,判断函数在(﹣1,1)上的单调性,并给出证明;

(3)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的中心为点, 边所在的直线方程为.

1边所在的直线方程和正方形外接圆的方程;

2若动圆过点,且与正方形外接圆外切,求动圆圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车是碳排放量比较大的交通工具,某地规定,从2017年开始,将对二氧化碳排放量超过130 g/km的轻型汽车进行惩罚性征税,检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km):

80

110

120

140

150

100

120

x

100

160

经测算得乙品牌轻型汽车二氧化碳排放量的平均值为=120 g/km.

(1)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;

(2)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130 g/km的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}满足 =pn+r(p,r为常数),其中Sn为数列{an}的前n项和.
(1)若p=1,r=0,求证:{an}是等差数列;
(2)若p= ,a1=2,求数列{an}的通项公式;
(3)若a2015=2015a1 , 求pr的值.

查看答案和解析>>

同步练习册答案