精英家教网 > 高中数学 > 题目详情
20.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标分别是-2,6,图象与y轴相交,交点与原点的距离为3,求此函数的解析式.

分析 由题意可设函数的解析式为y=a(x+2)(x-6),由经过点(0,3),或(0,-3),带入即可求出a的值,问题得以解决.

解答 解:y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标分别是-2,6,图象与y轴相交,交点与原点的距离为3,
可设函数的解析式为y=a(x+2)(x-6),由经过点(0,3),或(0,-3),
则3=-12a,或-3=-12a,
解得a=-$\frac{1}{4}$,或a=$\frac{1}{4}$,
即y=$\frac{1}{4}$(x+2)(x-6),或y=-$\frac{1}{4}$(x+2)(x-6),
即y=$\frac{1}{4}$x2-x-3,或y=-$\frac{1}{4}$x2+x+3

点评 本题考查了函数解析的求法,待定系数法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设集合A={x|f(x)=0},B={x|g(x)=0},那么方程f(x)•g(x)=0的解集是(  )
A.AB.BC.A∩BD.A∪B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线a(x+y-3)+b(x-y+1)=0与圆x2+y2=5的位置关系是(  )
A.相交B.相切C.相离D.以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知M={x|y=x2+1},N={y|y=x2+1},则∁MN等于(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=cos2x+$\frac{1}{2}$sin(2x+$\frac{π}{2}$)-$\frac{1}{2}$.
(1)求f(x)在($\frac{π}{6}$,$\frac{2π}{3}$)上的值域.
(2)设A,B,C为△ABC的三个内角,若角C满足f($\frac{C}{2}$)=$\frac{\sqrt{2}}{2}$,且边c=$\sqrt{2}$a,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个函数:①y=$\frac{x}{x-1}$;②y=x2+x;③y=-(x+1)2;④y=$\frac{x}{1-x}$+2,其中在(-∞,0)上为减函数的是(  )
A.B.C.①④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,若asinBcosC+csinBcosA=$\frac{1}{2}$b,且ac=4,则△ABC的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆的中心在原点焦点在x轴上离心率是$\frac{\sqrt{5}}{5}$,且过点P(-5,4),求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等差数列{an}中an=$\frac{64-4n}{5}$,且An=|an+an+1+…+an+12|,(n∈N+),则当An取最小值时,n=10.

查看答案和解析>>

同步练习册答案