精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,平面,点是棱的中点,,点是棱上一点,且.

1)证明:平面

2)若,点在棱上,且,求直线与平面所成角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)证明平面,可得出,再证明可得出,利用线面垂直的判定定理可得出结论;

2)过点的平行线交于点,然后以点为坐标原点,所在直线分别为轴建立空间直角坐标系,计算出的坐标,并计算出平面的法向量,利用空间向量法能计算出直线与平面所成角的正弦值.

1)因为平面,且平面,所以

,所以平面

平面,故

因为

因为平面平面,所以

所以,所以,又平面

2)因为,则

过点的平行线交于点,因为平面,所以平面

又因为,故可以分别作为轴、轴、轴建立空间直角坐标系,

则部分点坐标为:

因为点在棱上,且,则

,即有,即

由(1)知平面,则为平面的一个法向量,

设直线与平面所成角为,则

即直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产的产品中分正品与次品,正品重,次品重,现有5袋产品(每袋装有10个产品),已知其中有且只有一袋次品(10个产品均为次品)如果将5袋产品以15编号,第袋取出个产品(),并将取出的产品一起用秤(可以称出物体重量的工具)称出其重量,若次品所在的袋子的编号是2,此时的重量_________;若次品所在的袋子的编号是,此时的重量_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)若函数存在极值点,求的取值范围;

2)设,若不等式上恒成立,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

1)求函数的单调区间;

2)设,若有两个相异零点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门为了解某企业生产的一-种圆柱形零件的质量情况,随机抽检了100个零件,得到这些零件的横截面直径d(单位:)的频率分布表如下:

d的分组

零件数

12

38

38

10

2

1)试估计这个企业生产的这类零件的横截面直径不低于的概率;

2)求这个企业生产的这类零件的横截面直径的平均数与标准差的估计值(同一组中的数据用该区间的中点值为代表).(精确到0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)令,讨论的单调性;

2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是(  )

A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量

C.华为销量最大的是第四季度D.三星销量最小的是第四季度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x22acoskπlnxkN*aRa0).

1)讨论函数fx)的单调性;

2)若k2018,关于x的方程fx)=2ax有唯一解,求a的值;

3)当k2019时,证明:对一切x∈(0+∞),都有成立.

查看答案和解析>>

同步练习册答案