精英家教网 > 高中数学 > 题目详情
已知命题p:x2-7x+10≤0,命题q:x2-2x+(1-a)(1+a)≤0,(a>0),若“¬q”是“¬p”的充分而不必要条件,求a的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:命题p:x2-7x+10≤0,可得解集A=[2,5].命题q:x2-2x+(1-a)(1+a)≤0,(a>0),可得解集B=[-a-1,a-1].由于“¬q”是“¬p”的充分而不必要条件,
可得p是q的充分而不必要条件,因此A?B,解出即可.
解答: 解:命题p:x2-7x+10≤0,解得2≤x≤5,∴A=[2,5].
命题q:x2-2x+(1-a)(1+a)≤0,(a>0),解得-a-1≤x≤a-1,∴B=[-a-1,a-1].
∵“¬q”是“¬p”的充分而不必要条件,
∴p是q的充分而不必要条件,
∴A?B,
-a-1≤2
a-1≥5
a>0
,且等号不能同时成立,
解得a≥6.
∴a的取值范围是[6,+∞).
点评:本题考查了一元二次不等式的解法、集合之间的关系、简易逻辑的判定,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
9
=1(a>0)上一点,F1、F2分别为双曲线的左、右焦点,点I为△PF1F2的内心,有关下列命题:
①若S△PF1F2=3
3
,则∠F1PF2=
3

②若离心率为
5
4
,且|S △IPF1-S △IPF2|=λS △IF1F2,则λ=
4
5

③若离心率为
5
4
,则点I的横坐标x1满足:|x1|=4
④若点I的横坐标x1满足:|x1|=3,则双曲线的半焦距c=3
2

其中正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(1,3)作直线l,使它经过点(0,a)和(b,0),a,b是正整数,则直线l的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-|x|,若f(log2
1
m+1
)<f(2),则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵m=
3-2
2-2
,α=
-1
4
,试计算:M10α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
2
+y2=1的左焦点为F,O为坐标原点.
(1)求过点O、F,并且与直线l:x=-2相切的圆的方程;
(2)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

网通公司规定,市话费的计费方法为:前3分钟(含三分钟)0.22元,以后每分钟0.1元,为实现算法,输出费用,则下面给出的条件语句符合题意的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2x,x≤
1
2
2-2x,x>
1
2
,则函数g(x)=f(f(x))在[0,1]上的图象总长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校招募了8名男志愿者和12名女志愿者,将这20名志愿者的身高(单位:cm)编成如下茎叶图:若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“拿高个子”,如果用分层抽样的方法从“高小子”和“攀高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是
 

查看答案和解析>>

同步练习册答案