精英家教网 > 高中数学 > 题目详情
给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14 +15+16,…,则这个数列的一个通项公式是
[     ]
A.an=2n2+3n-1
B.an=n2+5n-5
C.an=2n3-3n2+3n-1
D.an=2n3-n2+n-2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

20、若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{An}:A1,A2,A3,…,An,若不改变A1,仅改变A2,A3,…,An中部分项的符号,得到的新数列{an}称为数列{An}的一个生成数列.如仅改变数列1,2,3,4,5的第二、三项的符号可以得到一个生成数列1,-2,-3,4,5.已知数列{an}为数列{
1
2n
}(n∈N*)
的生成数列,Sn为数列{an}的前n项和.
(1)写出S3的所有可能值;
(2)若生成数列{an}满足:S3n=
1
7
(1-
1
8n
)
,求{an}的通项公式;
(3)证明:对于给定的n∈N*,Sn的所有可能值组成的集合为:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{An}:A1,A2,A3,…,An,若不改变A1,仅改变A2,A3,…,An中部分项的符号,得到的新数列{an}称为数列{An}的一个生成数列.如仅改变数列1,2,3,4,5的第二、三项的符号可以得到一个生成数列1,-2,-3,4,5.已知数列{an}为数列{
1
2n
}(n∈N*)
的生成数列,Sn为数列{an}的前n项和.
(1)写出S3的所有可能值;
(2)若生成数列{an}的通项公式为an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn
(3)用数学归纳法证明:对于给定的n∈N*,Sn的所有可能值组成的集合为:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

写出下列命题的否定.
(1) 三个给定产品都是次品;
(2) 数列1 ,2 ,3 ,4 ,5 中的每一项都是偶数;
(3) 方程x2-8x+15 =0 有一个根是偶数;
(4) 有的四边形是正方形

查看答案和解析>>

同步练习册答案