【题目】某超市从年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取个,并按、、、、分组,得到频率分布直方图如图,假设甲、乙两种酸奶独立销售且日销售量相互独立.
(1)写出频率分布直方图甲中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为、,试比较与的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于箱且另一个不高于箱的概率;
(3)设表示在未来天内甲种酸奶的日销售量不高于箱的天数,以日留住量落入各组的频率为概率,求的分布列和数学期望.
【答案】(1),;(2);(3)分布列见解析,数学期望为.
【解析】
(1)由各小矩形面积和为,先求出,由频率分布直方图可看出,甲的销售量比较分散,而乙较为集中,由此能比、的大小;
(2)分两种情况讨论:甲种酸奶的销售量高于箱,乙种酸奶的销售量不高于箱;甲种酸奶的销售量不高于箱,乙种酸奶的销售量高于箱.然后利用独立事件的概率乘法公式可计算出所求事件的概率;
(3)由题意得出,利用二项分布可得出随机变量的分布列,并计算出随机变量的数学期望.
(1)由各小矩形面积和为,得,解得,
由频率分布直方图可看出,甲的销售量比较分散,而乙较为集中,主要集中在箱,故;
(2)设事件:在未来的某一天里,甲种酸奶的销售量不高于箱;
事件:在未来的某一天里,乙种酸奶的销售量不高于箱;
事件:在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于箱且另一个不高于箱.
则,,
;
(3)由题意可知,,,
,,
,
所以,随机变量的分布列如下表所示:
随机变量的数学期望为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。
(1)写出直线l的普通方程和曲线C的直角坐标方程:
(2)若成等比数列,求a的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,动圆过定点且与圆相切,圆心的轨迹为曲线.
(1)求的方程;
(2)设斜率为1的直线交于,两点,交轴于点,轴交于,两点,若,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若项数为的单调增数列满足:①;②对任意,存在使得;则称数列具有性质.
(1)分别判断数列1,3,4,7和1,2,3,5是否具有性质,并说明理由;
(2)若数列具有性质,且.
(i)证明数列的项数;
(ii)求数列中所有项的和的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次期末数学测试中,唐老师任教班级学生的考试得分情况如表所示:
分数区间 | |||||
人数 | 2 | 8 | 32 | 38 | 20 |
(1)根据上述表格,试估计唐老师所任教班级的学生在本次期末数学测试的平均成绩;
(2)现从成绩在中按照分数段,采取分层抽样的方法随机抽取5人,再在这5人中随机抽取2人作小题得分分析,求恰有1人的成绩在上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的方程为,以为极点,轴的正半轴为极轴建立极坐标系,曲线是圆心在极轴上且经过极点的圆,射线与曲线交于点.
(1)求曲线的参数方程,的极坐标方程;
(2)若,是曲线上的两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读:
已知、,,求的最小值.
解法如下:,
当且仅当,即时取到等号,
则的最小值为.
应用上述解法,求解下列问题:
(1)已知,,求的最小值;
(2)已知,求函数的最小值;
(3)已知正数、、,,
求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱柱中,所有棱长都是3,点D,E分别是线段和上的点,.
(1)试确定点E的位置,使得平面,并证明;
(2)若直线与平面所成角的正弦值为,求二面角的余弦值的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com