精英家教网 > 高中数学 > 题目详情
设P是线段P1P2上的一个三等分点,且P1(x1,y1),P2(x2,y2),求点P的坐标.
考点:线段的定比分点
专题:平面向量及应用
分析:
P1P
=
1
3
P1P2
PP2
=
2
3
P 1P2
,得出
P 1P2
=(x2-x1,y2-y1),
P1P
=(x-x1,y-y1),
PP2
=(x2-x,y2-y),解方程求解即可.
解答: 解:∵设P是线段P1P2上的一个三等分点,P(x,y),
P1P
=
1
3
P1P2
PP2
=
2
3
P 1P2

∵∵
P 1P2
=(x2-x1,y2-y1),
P1P
=(x-x1,y-y1),
PP2
=(x2-x,y2-y),
1
3
(x2-x1)=x-x1
1
3
(y2-y1)=y-y1,或
2
3
(x2-x1)=x2-x,
2
3
(y2-y1)=y2-y,
求解:x=
x1+2x2
3
,y=
y1+2y2
3
,或x=
2x1+x2
3
,y=
2y1+y2
3

∴P(
x1+2x2
3
y1+2y2
3
),或P(
2x1+x2
3
2y1+y2
3
点评:本题考查线段的定比分点,考查学生计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用穿根法的图象做出h(x)=-3+
1
x2
,指出函数在区间
 
>0,区间
 
<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β)+4,其中a,b,α,β均为非零的常数,f(1988)=3,则f(2008)的值为(  )
A、1B、3C、5D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足g(-2)=
1
4
,又函数f(x)=
-g(x)+n
2g(x)+m
是定义域为R的奇函数
(1)求函数f(x)的解析式;
(2)判断f(x)的单调性(无需证明),并求函数f(x)的值域;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
(Ⅰ)求证:AB⊥PD;
(Ⅱ)若∠BPC=90°,PB=PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时直线PB与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2,-3,5),
b
=(-3,1,-4),则|
a
-2
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

tan
6
=(  )
A、-
3
B、
3
3
C、
3
D、-
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
2
sin(
π
4
+2x)+1.
(1)求函数f(x)的最大值和最小值以及取最大、最小值时相应x的取值集合;
(2)写出函数f(x)的单调递增区间.
(3)作出此函数在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中(  )
A、AB与CD所成的角为60°
B、AB与CD相交
C、AB⊥CD
D、AB∥CD

查看答案和解析>>

同步练习册答案