精英家教网 > 高中数学 > 题目详情

设函数,其中为常数。

(Ⅰ)当时,判断函数在定义域上的单调性;

(Ⅱ)若函数有极值点,求的取值范围及的极值点。

 

【答案】

(Ⅰ)函数在定义域上单调递增;(Ⅱ)当且仅当有极值点; 当时,有惟一最小值点;当时,有一个极大值点和一个极小值点

【解析】

试题分析:(Ⅰ)函数在定义域上的单调性的方法,一是利用定义,二是利用导数,此题既有代数函数又有对数函数,显然利用导数判断,只需对求导,判断的符号即可;(Ⅱ)求的极值,只需对求导即可,利用导数求函数的极值一般分为四个步骤:①确定函数的定义域;②求出;③令,列表;④确定函数的极值.此题由(Ⅰ)得,当时,函数无极值点,只需讨论的情况,解的根,讨论在范围内根的个数,从而确定的取值范围及的极值点,值得注意的是,求出的根时,忽略讨论根是否在定义域内,而出错.

试题解析:(Ⅰ)由题意知,的定义域为  ∴当时,,函数在定义域上单调递增.

(Ⅱ)①由(Ⅰ)得,当时,函数无极值点,②时,有两个相同的解,但当时,,当时,时,函数上无极值点,③当时,有两个不同解,时,,而,此时 在定义域上的变化情况如下表:

极小值

由此表可知:当时,有惟一极小值点 

ii)   当时,0<<1,此时,的变化情况如下表:

极大值

极小值

由此表可知:时,有一个极大值,和一个极小值点; 综上所述:当且仅当有极值点; 当时,有惟一最小值点;当时,有一个极大值点和一个极小值点

考点:导数与函数的单调性、导数与函数的极值,考查学生的基本推理能力及运算能力.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数,其中为常数。

(Ⅰ)当时,判断函数在定义域上的单调性;

(Ⅱ)若函数有极值点,求的取值范围及的极值点。

查看答案和解析>>

科目:高中数学 来源:2014届山西省高三第一学期8月月考理科数学试卷(解析版) 题型:解答题

设函数,其中为常数。

(Ⅰ)当时,判断函数在定义域上的单调性;

(Ⅱ)若函数有极值点,求的取值范围及的极值点。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三10月月考文科数学卷 题型:解答题

设函数,其中为常数.

(1)证明:对任意的图象恒过定点;

(2)当时,判断函数是否存在极值?若存在,证明你的结论并求出所有

极值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高三上学期10月月考理科数学卷 题型:解答题

(本小题满分14分)20. (14分)设函数,其中为常数.

(1)当时,判断函数在定义域上的单调性;

(2)若函数的有极值点,求的取值范围及的极值点;

(3)求证对任意不小于3的正整数,不等式都成立.

 

查看答案和解析>>

同步练习册答案