精英家教网 > 高中数学 > 题目详情

【题目】我国古代数学名著《九章算术商功》中阐述:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,对该几何体有如下描述:

①四个侧面都是直角三角形;

②最长的侧棱长为

③四个侧面中有三个侧面是全等的直角三角形;

④外接球的表面积为24π.

其中正确的描述为____

【答案】①②④

【解析】

由三视图还原几何体,可知该几何体为四棱锥,PA⊥底面ABCDPA2,底面ABCD为矩形,AB2BC4,然后逐一分析四个命题得答案.

由三视图还原原几何体如图,

可知该几何体为四棱锥,PA⊥底面ABCDPA=2

底面ABCD为矩形,AB=2BC=4

则四个侧面是直角三角形,故①正确;

最长棱为PC,长度为2,故②正确;

由已知可得,PB=2PC=2PD=2,则四个侧面均不全等,故③错误;

把四棱锥补形为长方体,则其外接球半径为PC=,其表面积为4π×=24π,故④正确.

∴其中正确的命题是①②④.

故答案为:①②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线y2x有一个相同的焦点,且该椭圆的离心率为.

(1)求椭圆的标准方程;

(2)过点P(0,1)的直线与该椭圆交于AB两点,O为坐标原点,若,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

(1)求未来4年中,至多1年的年入流量超过120的概率;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:

年入流量

发电量最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:

打卡天数

17

18

19

20

21

男生人数

3

5

3

7

2

女生人数

3

5

5

7

3

1)根据上表数据,求该幼儿园男生平均打卡的天数;

2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足为非零常数.

1)是否存在实数,使得数列成为等差数列或等比数列,若存在,找出所有的,及对应的通项公式;若不存在,说明理由;

2)当时,记,证明:数列是等比数列;

3)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCDA1B1C1D1 的棱长为 2,且AC BD 交于点OE 为棱DD1 中点,以A 为原点,建立空间直角坐标系Axyz,如图所示.

(Ⅰ)求证:B1O平面EAC

(Ⅱ)若点F EA 上且B1FAE,试求点F 的坐标;

(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,.

1)求证:平面FBC

2)线段ED上是否存在点Q,使平面平面QBC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的六面体中,面是边长为2的正方形,面是直角梯形,.

(1)求证:平面

(2)若二面角为60°,求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农户计划种植莴笋和西红柿,种植面积不超过亩,投入资金不超过万元,假设种植莴笋和西红柿的产量、成本和售价如下表:

年产量/亩

年种植成本/亩

每吨售价

莴笋

5吨

1万元

0.5万元

西红柿

4.5吨

0.5万元

0.4万元

那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为____万元

查看答案和解析>>

同步练习册答案