精英家教网 > 高中数学 > 题目详情
6.对于函数f(x)=$\frac{{{2^x}+a}}{{{2^x}-1}}$,
(1)求函数的定义域;       
(2)当a为何值时,f(x)为奇函数;
(3)用定义证明(2)中的函数在(0,+∞)上是单调递减的.

分析 (1)由2x-1≠0便可得出该函数的定义域;
(2)f(x)若为奇函数,便有f(-1)=-f(1),求出f(-1),f(1)带入便可得到a=1;
(3)分离常数得到$f(x)=1+\frac{2}{{2}^{x}-1}$,根据减函数的定义,设任意的x1>x2>0,然后作差,通分,从而证明f(x1)<f(x2)便可得到f(x)在(0,+∞)上单调递减.

解答 解:(1)要使f(x)有意义,则2x≠1;
∴x≠0;
∴该函数定义域为{x|x≠0};
(2)若f(x)为奇函数,则:f(-1)=-f(1);
∴$\frac{\frac{1}{2}+a}{\frac{1}{2}-1}=-\frac{2+a}{2-1}$;
解得a=1;
即a=1时,f(x)为奇函数;
(3)证明:a=1时,f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}=1+\frac{2}{{2}^{x}-1}$,设x1>x2>0,则:
$f({x}_{1})-f({x}_{2})=\frac{2}{{2}^{{x}_{1}}-1}-\frac{2}{{2}^{{x}_{2}}-1}$=$\frac{2({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}-1)({2}^{{x}_{2}}-1)}$;
∵x1>x2>0;
∴${2}^{{x}_{1}}>{2}^{{x}_{2}}$,${2}^{{x}_{2}}-{2}^{{x}_{1}}<0$,${2}^{{x}_{1}}-1>0,{2}^{{x}_{2}}-1>0$;
∴f(x1)<f(x2);
∴f(x)在(0,+∞)上单调递减.

点评 考查函数定义域的概念及求法,奇函数的定义,分离常数法的运用,以及减函数的定义,根据减函数的定义证明一个函数为减函数的方法和过程,作差的方法比较f(x1),f(x2),作差后是分式的一般要通分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E是线段AA1的中点,M是平面BB1D1D内的点,则|AM|+|ME|的最小值是$\frac{3}{2}$;若|ME|≤1,则点M在平面BB1D1D内形成的轨迹的面积等于$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=-x2+mx+1,(x∈R)
①求f(x)在[-1,1]上的最小值.
②对于函数y=g(x)在定义域内给定区间[a,b],如果存在x0(a<x0<b)满足$g({x_0})=\frac{g(b)-g(a)}{b-a}$,则称函数g(x)是区间[a,b]上的“平均值函数”,x0是它的一个“均值点”.如函数y=x2是[-1,1]上的平均值函数,0就是它的均值点.若函数f(x)是区间[-1,1]上的平均值函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆柱的底面半径为4,与圆柱底面成60°角的平面截这个圆柱得到一个椭圆,则这个椭圆的离心率为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{{{x^2}+1}}{2x+m}$是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(-∞,-1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线y=x+b与曲线x=$\sqrt{1-{y^2}}$恰有一个公共点,则b的取值范围是(  )
A.$[{-\sqrt{2},\sqrt{2}}]$B.$[{-1,\sqrt{2}}]$C.$(-1,1]∪\{\sqrt{2}\}$D.$(-1,1]∪\{-\sqrt{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)为定义在R上的奇函数,且在(0,+∞)上是增函数,f(2)=0,则x[f(x)-f(-x)]<0的解集为(-2,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,男、女生各抽取多少位才符合抽样要求?
(2)随机抽出8位,他们的物理、化学分数对应如下表:
学生编号12345678
物理分数x6065707580859095
化学分数y7277808488909395
根据上表数据用变量y与x的散点图说明化学成绩y与物理成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline{y}$-b$\overline{x}$;  参考数据:$\overline{x}$=77.5,$\overline{y}$=84.875.
$\sum_{i=1}^{8}$(xi-x)2=1050,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2≈457,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)≈688.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x+1|+|x-1|,x∈R,不等式f(x)≤2$\sqrt{3}$的解集为M.
(1)求M;
(2)当a,b∈M时,证明:$\sqrt{3}$|a+b|≤|ab+3|.

查看答案和解析>>

同步练习册答案