分析 (1)求出导函数,利用极值点,列出方程,求解a即可.
(2)利用导函数以及极值点,判断函数的极值以及最值,推出结果即可.
解答 解:(1)f'(x)=-3x2-4x+a,由f'(-2)=0得a=4
经检验,当a=4时,x=-2是函数f(x)的一个极值点;
(2)f'(x)=-3x2-4x+4=-(3x-2)(x+2)
由f'(x)=0得$x=\frac{2}{3},x=-2$;
∴函数的单调减区间为:(-3,-2),($\frac{2}{3}$,3);单调增区间为:(-2,$\frac{2}{3}$).
又f(-3)=-3,f(-2)=-8,$f(\frac{2}{3})=\frac{40}{27}$,f(3)=-33,
∴f(x)max=f($\frac{2}{3}$)=$\frac{40}{27}$,
f(x)min=f(3)=-33.
点评 本题考查函数的极值以及函数的最值,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,1) | B. | (-1,+∞) | C. | (-∞,-1) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-2<x<1} | B. | {x|-2<x<1或x>2} | C. | {x|x>2} | D. | {x|1<x<2或x<-2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | B. | (log2x)′=$\frac{1}{xln2}$ | ||
C. | (3x)′=3x•log 3e | D. | (x2cos x)′=-2xsin x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com