精英家教网 > 高中数学 > 题目详情

【题目】已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为(
A.
B.
C.
D.

【答案】B
【解析】解:如图, 取AD中点F,连接EF,CF,
∵E为AB的中点,
∴EF∥DB,
则∠CEF为异面直线BD与CE所成的角,
∵ABCD为正四面体,E,F分别为AB,AD的中点,
∴CE=CF.
设正四面体的棱长为2a,
则EF=a,
CE=CF=
在△CEF中,由余弦定理得:
=
故选:B.

【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 上单调递增,

(1)若函数有实数零点,求满足条件的实数的集合

(2)若对于任意的时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数的图像在点处有相同的切线,求的值;

(Ⅱ)当时,恒成立,求整数的最大值;

(Ⅲ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|﹣2<x<2},N={x|x2﹣2x﹣3<0},则集合M∩N=(
A.{x|x<﹣2}
B.{x|x>3}
C.{x|﹣1<x<2}
D.{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1 , A2 , …,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是(

A.i<6
B.i<7
C.i<8
D.i<9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+|x﹣a|+1,x∈R,a∈R.
(Ⅰ)当a=1时,求函数f(x)的最小值;
(Ⅱ)若函数f(x)的最小值为g(a),令m=g(a),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD. (Ⅰ)证明:平面A1AE⊥平面A1DE;
(Ⅱ)若DE=A1E,试求二面角E﹣A1C﹣D的余弦值.

查看答案和解析>>

同步练习册答案