分析 (Ⅰ)利用绝对值不等式的解法求出集合M,利用绝对值三角不等式直接证明;
(Ⅱ)利用(Ⅰ)的结果,说明ab的范围,比较|1-4ab|与2|a-b|两个数的平方差的大小,即可得到结果.
解答 解:(Ⅰ)记f(x)=|x-1|-|x+2|=$\left\{\begin{array}{l}{3,x≤-1}\\{-2x-1,-1<x<1}\\{-3,x≥1}\end{array}\right.$,
由-2<-2x-1<0解得-$\frac{1}{2}$<x<$\frac{1}{2}$,则M=(-$\frac{1}{2}$,$\frac{1}{2}$).…(3分)
∵a、b∈M,∴|a|<$\frac{1}{2}$,|b|<$\frac{1}{2}$,
∴|$\frac{1}{3}$a+$\frac{1}{6}$b|≤$\frac{1}{3}$|a|+$\frac{1}{6}$|b|<$\frac{1}{4}$.…(6分)
(Ⅱ)由(Ⅰ)得a2<$\frac{1}{4}$,b2<$\frac{1}{4}$.
因为|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)
=(4a2-1)(4b2-1)>0,…(9分)
所以|1-4ab|2>4|a-b|2,故|1-4ab|>2|a-b|.…(10分)
点评 本题考查不等式的证明,绝对值不等式的解法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,-3),-10 | B. | (1,-3),$\sqrt{10}$ | C. | (1,3),-10 | D. | (1,3),-$\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{1}{3}$,$\frac{5}{3}$] | B. | [-1,$\frac{5}{3}$] | C. | [-3,1] | D. | [$\frac{1}{3}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若a,b∈R,则$\frac{b}{a}+\frac{a}{b}≥2$ | B. | 若x<0,则x+$\frac{4}{x}$≥-2$\sqrt{x•\frac{4}{x}}$=-4 | ||
C. | 若ab≠0,则$\frac{b^2}{a}+\frac{a^2}{b}≥a+b$ | D. | 若x<0,则2x+2-x>2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com