7£®Ô±ýÊǾøºÊ¢ÃûµÄÖйú´«Í³Ð¡³ÔÖ®Ò»£¬Ô±ýÔ²ÓÖÔ²£¬ÓÖÊǺϼҷֳԣ¬ÏóÕ÷×ÅÍÅÔ²ºÍÄÀ£¬ÔÚÖÐÇïÕâÒ»ÌìÊDZØʳ֮Ʒ£®Ä³Ê³Æ·¹«Ë¾ÔÚÖÐÇï¼Ñ½ÚÍƳöÖÐʽÔ±ý£¬¸ÛʽÔ±ý£¬Å·Ê½Ô±ýÈý¸öϵÁУ¬¸ÃʳƷ¹«Ë¾¶ÔÆäÈ«²¿42ÃûÄÚ²¿Ô±¹¤ÊµÐÐÓŻݣ¬¶ÔÖÐÇï½Úµ±ÌìÔ±¹¤¹ºÂò¹«Ë¾¡°Ô±ý¡±Çé¿ö½øÐÐͳ¼Æ£¬½á¹ûÈçÏ£º£¨ËùÓÐÔ±¹¤¶¼²Î¼ÓÁ˹ºÂò£¬ÇÒÖ»¹ºÂòÒ»ÖÖ£©
ÆäÖйºÂòŷʽÔ±ýµÄ40ËêÒÔÏÂÔ±¹¤Õ¼È«²¿Ô±¹¤µÄÈý·ÖÖ®Ò»£®
  ÖÐʽÔ±ý ¸ÛʽÔ±ý Å·Ê½Ô±ý
 40ËêÒÔÉÏ£¨º¬40Ë꣩Ա¹¤ÈËÊý 10 y 4
 40ËêÒÔÏÂÔ±¹¤ÈËÊý 2 6 x
£¨1£©Çóx£¬yµÄÖµ£»
£¨2£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý1%µÄÇé¿öÏÂÈÏΪԱ¹¤¹ºÂò¡°Å·Ê½Ô±ý¡±ÓëÄêÁäÓйأ¿
£¨3£©ÒÑÖª¼×¡¢ÒÒÁ½Î»Ô±¹¤¹ºÂòµÄÊÇ¡°Å·Ê½Ô±ý¡±£¬ÒÀÕÕ¹ºÂòµÄÈý¸öϵÁзÖÀ࣬°´·Ö²ã³éÑùµÄ·½·¨´ÓÔ±¹¤ÖÐËæ»ú³éÈ¡7ÈË£¬¼Ç¼×¡¢ÒÒ2ÈËÖб»³éÈ¡µ½µÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk0£©  0.10.01 0.01 
 k0 2.706 6.635 10.828

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{2+6+x=\frac{1}{3}¡Á42}\\{10+y+4+2+6+x=42}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©µÃ³öÁÐÁª±í£¬ÀûÓù«Ê½¼ÆËã³ök£¬¼´¿ÉµÃ³ö½áÂÛ£®
£¨3£©°´·Ö²ã³éÑùµÄ·½·¨´ÓÔ±¹¤ÖÐËæ»ú³éÈ¡7ÈË£¬Ôò¹ºÂòÖÐÊÏÔ±ý¡¢¸ÛÊÏÔ±ý¡¢Å·Ê½Ô±ý±»³éÈ¡µ½µÄÈËÊý·Ö±ðΪ£º
2£¬3£¬2£¬Ôò¼Ç¼×¡¢ÒÒ2ÈËÖб»³éÈ¡µ½µÄÈËÊýX¿ÉÄÜȡֵΪ£¬0£¬1£¬2£®ÀûÓ󬼸ºÎ·Ö²¼Áм´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{2+6+x=\frac{1}{3}¡Á42}\\{10+y+4+2+6+x=42}\end{array}\right.$£¬½âµÃx=6£¬y=14£®
£¨2£©

  ·ÇŷʽÔ±ý Å·Ê½Ô±ý ºÏ¼Æ
 
40ËêÒÔÉÏ£¨º¬40Ë꣩Ա¹¤ÈËÊý
 24 4 28
 
40ËêÒÔÏÂÔ±¹¤ÈËÊý
 8 6 14
 ºÏ¼Æ 32 10 42
k=$\frac{42£¨24¡Á6-4¡Á8£©^{2}}{28¡Á14¡Á32¡Á10}$=4.2£¾2.706£¬
¡àÄÜÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý1%µÄÇé¿öÏÂÈÏΪԱ¹¤¹ºÂò¡°Å·Ê½Ô±ý¡±ÓëÄêÁäÓйأ®
£¨3£©°´·Ö²ã³éÑùµÄ·½·¨´ÓÔ±¹¤ÖÐËæ»ú³éÈ¡7ÈË£¬Ôò¹ºÂòÖÐÊÏÔ±ý¡¢¸ÛÊÏÔ±ý¡¢Å·Ê½Ô±ý±»³éÈ¡µ½µÄÈËÊý·Ö±ðΪ£º
2£¬3£¬2£¬Ôò¼Ç¼×¡¢ÒÒ2ÈËÖб»³éÈ¡µ½µÄÈËÊýX¿ÉÄÜȡֵΪ£¬0£¬1£¬2£®
ÔòP£¨X=0£©=$\frac{{∁}_{5}^{2}}{{∁}_{7}^{2}}$=$\frac{10}{21}$£¬P£¨X=1£©=$\frac{{∁}_{5}^{1}{∁}_{2}^{1}}{{∁}_{7}^{2}}$=$\frac{10}{21}$£¬ÔòP£¨X=0£©=$\frac{{∁}_{2}^{2}}{{∁}_{7}^{2}}$=$\frac{1}{21}$£¬
XµÄ·Ö²¼ÁÐΪ£º
 X 0 1 2
 P $\frac{10}{21}$ $\frac{10}{21}$ $\frac{1}{21}$
E£¨X£©=0+1¡Á$\frac{10}{21}$+$2¡Á\frac{1}{21}$=$\frac{4}{7}$£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÔ­Àí¡¢³¬¼¸ºÎ·Ö²¼Áм°ÆäÊýѧÆÚÍû¡¢·Ö²ã³éÑù£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ$\frac{{9\sqrt{3}}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÏòÁ¿$\overrightarrow a$ÓëÏòÁ¿$\overrightarrow b$Âú×ã|$\overrightarrow a$|=3£¬|$\overrightarrow b$|=2£¬|$2\overrightarrow a+\overrightarrow b$|=2$\sqrt{13}$£¬Ôò$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{4}$C£®$\frac{¦Ð}{3}$D£®$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®$\root{3}{£¨lg50-1£©^{3}}$-$\sqrt{£¨lg2-1£©^{2}}$=£¨¡¡¡¡£©
A£®2lg5B£®0C£®-1D£®-2lg5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®$\frac{2sin20¡ãtan70¡ã-2sin40¡ã}{sin35¡ã}$=$\sqrt{6}-\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®µÈ²îÊýÁÐ{an}Âú×ãa1=3£¬a1+a2+¡­+a10=120£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬ÇÒSn=2bn-1£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{anbn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªF1¡¢F2ÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬µãPÊǸÃË«ÇúÏßÉϵÄÈÎÒâÒ»µã£¬Èô¡÷PF1F2µÄÄÚÇÐÔ²°ë¾¶Îªr£¬ÔòrµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬a£©B£®£¨0£¬b£©C£®£¨0£¬$\sqrt{{a}^{2}+{b}^{2}}$£©D£®£¨0£¬$\sqrt{ab}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èôº¯Êý$f£¨x£©=sin£¨\frac{1}{2}x+\frac{¦Ð}{6}£©$£¬Ôòf£¨x£©£¨¡¡¡¡£©
A£®Í¼Ïó¹ØÓÚ$x=\frac{¦Ð}{3}$¶Ô³Æ
B£®Í¼Ïó¹ØÓÚ$£¨\frac{2¦Ð}{3}£¬0£©$¶Ô³Æ
C£®ÔÚ$[\frac{2¦Ð}{3}£¬\frac{8¦Ð}{3}]$Éϵ¥µ÷µÝ¼õ
D£®µ¥µ÷µÝÔöÇø¼äÊÇ$[2k¦Ð-\frac{4¦Ð}{3}£¬2k¦Ð+\frac{2¦Ð}{3}]£¨k¡ÊZ£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬-¦Ð£¼¦Õ£¼¦Ð£©µÄͼÏóÈçͼËùʾ£®
£¨1£©¸ù¾ÝͼÏóд³öf£¨x£©µÄ½âÎöʽ£»
£¨2£©AΪÈñ½ÇÈý½ÇÐεÄÒ»¸öÄڽǣ¬Çóf£¨A£©µÄ×î´óÖµ£¬¼°µ±f£¨A£©È¡×î´óֵʱAµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸