2£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=t£¨t¡Ù0ÇÒt¡Ù1£©£¬a2=t2£¬ÇÒµ±x=tʱ£¬º¯Êýf£¨x£©=$\frac{1}{2}$£¨an-an-1£©x2-£¨an+1-an£©x£¨n¡Ý2£¬n¡ÊN*£©È¡µÃ¼«Öµ£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an+1-an}ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{an]µÄͨÏʽ£»
£¨3£©µ±t=-$\sqrt{\frac{7}{10}}$ʱ£¬Èôbn=anln|an|£¬ÊýÁÐ{bn}ÖÐÊÇ·ñ´æÔÚ×î´óÏÈç¹û´æÔÚ£¬ËµÃ÷Êǵڼ¸ÏÈç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ýµ±x=tʱ£¬f£¨x£©=$\frac{1}{2}$£¨an-an-1£©x2-£¨an+1-an£©x£¨n¡Ý2£©È¡µÃ¼«Öµ£¬Çóµ¼£¬µÃµ½f'£¨t£©=0£¬¼´an-an-1£©t=an+1-an£¨n¡Ý2£©ÕûÀí¿ÉÖ¤£»
£¨2£©Í¨¹ý£¨1£©¡¢ÀûÓÃÀÛ¼Ó·¨¼´¿ÉÇóµÃÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©¸ù¾Ý£¨2£©È¥¾ø¶ÔÖµ·ûºÅ¿ÉÇóÊýÁÐ{bn}µÄͨÏʽ£¬¶Ôn·ÖÆæżÌÖÂÛ¼´µÃ½áÂÛ£®

½â´ð £¨1£©Ö¤Ã÷£ºÁîf¡ä£¨t£©=£¨an-an-1£©t-£¨an+1-an£©=0£¬
µÃ£º£¨an-an-1£©t=an+1-an£¨n¡Ý2£©£¬
ÓÖa2-a1=t£¨t-1£©£¬t¡Ù0ÇÒt¡Ù1£¬
¡àa2-a1¡Ù0£¬
¡à$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n}-{a}_{n-1}}$=t£¬
¡àÊýÁÐ{an+1-an}ÊÇÊ×ÏîΪt2-t¡¢¹«±ÈΪtµÄµÈ±ÈÊýÁУ»
£¨2£©½â£ºÓÉ£¨1£©Öªan+1-an=tn+1-tn£¬
¡àan-an-1=tn-tn-1£¬
¡àan-1-an-2=tn-1-tn-2£¬
¡­
a2-a1=t2-t£¬
ÉÏÃæn-1¸öµÈʽÏà¼Ó²¢ÕûÀíµÃ£ºan=tn£¨t¡Ù0ÇÒt¡Ù1£©£»
£¨3£©½áÂÛ£ºÊýÁÐ{bn}ÖеÄ×î´óÏîΪµÚ5Ï
ÀíÓÉÈçÏ£º
ÓÉ£¨2£©Öªbn=anln|an|=tn•ln|tn|=ntn•ln|t|£®
¡ßt=-$\sqrt{\frac{7}{10}}$£¬¡à-1£¼t£¼0£¬
¡ßµ±nΪżÊýʱbn£¾0£¬µ±nΪÆæÊýʱbn£¼0£¬
¡à×î´óÏî±ØÐëΪÆæÊýÏ
Éè×î´óÏîΪ£ºb2k+1£¬Ôò$\left\{\begin{array}{l}{{b}_{2k+1}¡Ý{b}_{2k-1}}\\{{b}_{2k+1}¡Ý{b}_{2k+3}}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{£¨2k+1£©•{t}^{2k+1}•ln|t|¡Ý£¨2k-1£©•{2}^{2k-1}•ln|t|}\\{£¨2k+1£©•{t}^{2k+1}•ln|t|¡Ý£¨2k+3£©•{t}^{2k+3}•ln|t|}\end{array}\right.$£¬
ÕûÀíµÃ£º$\left\{\begin{array}{l}{£¨2k+1£©•{t}^{2}¡Ý2k-1}\\{2k+1¡Ý£¨2k+3£©•{t}^{2}}\end{array}\right.$£¬
½«t=-$\sqrt{\frac{7}{10}}$´úÈëÉÏʽ£¬½âµÃ£º$\frac{11}{6}$¡Ük¡Ü$\frac{17}{6}$£¬
¡àk=2£¬¼´ÊýÁÐ{bn}ÖеÄ×î´óÏîΪµÚ5Ï

µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁеĶ¨ÒåºÍͨÏʽ£¬ÀÛ¼Ó·¨ÇóÊýÁÐͨÏʽ£¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄ˼Ï룮ÆäÖÐÎÊÌ⣨3£©ÊÇÒ»¸ö¿ª·ÅÐÔÎÊÌ⣬¿¼²éÁËͬѧÃǹ۲졢ÍÆÀíÒÔ¼°´´ÔìÐԵطÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¾ØÐεÄÖܳ¤Îª36£¬¾ØÐÎÈÆËüµÄÒ»Ìõ±ßÐýתÐγÉÒ»¸öÔ²Öù£¬¾ØÐεij¤¡¢¿í¸÷Ϊ¶àÉÙʱ£¬ÐýתÐγɵÄÔ²ÖùµÄ²àÃæ»ý×î´ó£¿×î´ó²àÃæ»ýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=2x|2x-a|+2x+1-3£¬ÆäÖÐaΪʵÊý£®
£¨1£©Èôa=4£¬x¡Ê[1£¬3]£¬Çóf£¨x£©µÄÖµÓò£»
£¨2£©Èôf£¨x£©ÔÚRÉϵ¥µ÷£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª½Ç¦ÈµÄ¶¥µãÓëÔ­µãÖغϣ¬Ê¼±ßÓëxÖáµÄ·Ç¸º°ëÖáÖغϣ¬ÖÕ±ßÔÚÖ±Ïßy=2xÉÏ£¬Ôòsin¦È=£¨¡¡¡¡£©
A£®$\frac{\sqrt{5}}{5}$B£®$\frac{2\sqrt{5}}{5}$C£®$\frac{\sqrt{5}}{5}$»ò-$\frac{\sqrt{5}}{5}$D£®$\frac{2\sqrt{5}}{5}$»ò-$\frac{2\sqrt{5}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô¼¯ºÏA={x|ax2+x+1=0}ÖÐÖ»ÓÐÒ»¸öÔªËØ£¬Ôòa=£¨¡¡¡¡£©
A£®4B£®$\frac{1}{4}$C£®0»ò$\frac{1}{4}$D£®D¡¢

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ä³Ìú·»õÔËÕ¾¶Ô6ÁлõÔËÁгµ½øÐбà×éµ÷×飬¾ö¶¨½«Õâ6ÁÐÁгµ±à³ÉÁ½×飬ÿ×é3ÁУ¬ÇÒ¼×ÓëÒÒÁ½ÁÐÁгµ²»ÔÚͬһС×飬Èç¹û¼×ËùÔÚС×é3ÁÐÁгµÏÈ¿ª³ö£¬ÄÇôÕâ6ÁÐÁгµÏȺó²»Í¬µÄ·¢³µË³Ðò¹²ÓÐ216£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¼¯ºÏA=$\left\{{x\left|{{x^2}-2x£¾0}\right.}\right\}£¬B=\left\{{x\left|{-\sqrt{5}£¼x£¼\sqrt{5}}\right.}\right\}$£¬Ôò£¨¡¡¡¡£©
A£®A¡ÈB=RB£®A¡ÉB=∅C£®B⊆AD£®A⊆B

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÔϸø³öµÄ¸÷ÊýÖв»¿ÉÄÜÊǰ˽øÖÆÊýµÄÊÇ£¨¡¡¡¡£©
A£®123B£®10 110C£®4724D£®7 857

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª$\overrightarrow a=£¨x£¬2£©$£¬$\vec b=£¨2£¬1£©$ÇÒ$\vec a¡Î\vec b$£¬ÔòxµÈÓÚ£¨¡¡¡¡£©
A£®-4B£®-1C£®1D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸