精英家教网 > 高中数学 > 题目详情
8.函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}\right.$,给出下列命题:
①F(x)=|f(x);   
②函数F(x)是偶函数;
③当a<0时,若0<m<n<1,则有F(m)-F(n)<0成立;
④当a>0时,函数y=F(x)-2有4个零点.
其中正确命题的序号为②③④.

分析 (1)|f(x)|=|a|log2x|+1|,∴F(x)≠|f(x)|;①不对:(2)F(-x)=F(x),函数F(x)是偶函数;故②正确
(3)|log2m|>|log2n|,a|log2m|+1>a|log2n|+1,即F(m)<F(n)成立;故F(m)-F(n)<0成立;所以③正确
(4)x>0时,F(x)的最小值为F(1)=1,运用图象判断即可.

解答 解:解:(1)∵函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}\right.$,
对于①,∴|f(x)|=|a|log2x|+1|,∴F(x)≠|f(x)|;故①不错;
对于②,F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}\right.$═F(x)∴函数F(x)是偶函数;故②正确,
对于③,∵当a<0时,若0<m<n<1,∴|log2m|>|log2n|
∴a|log2m|+1>a|log2n|+1,即F(m)<F(n)成立;故F(m)-F(n)<0成立;所以③正确;
对于④,∴x>0时,F(x)在(0,1)单调递减,(1,+∞)单调递增,∴x>0时,F(x)的最小值为F(1)=1,
故x>0时,F(x)与y=-2有2个交点,∵函数F(x)是偶函数,∴x<0时,F(x)与y=-2有2个交点
故当a>0时,函数y=F(x)-2有4个零点.所以④正确,
故答案为:②③④

点评 本题综合考察了函数的性质,运用图象解决问题,对于函数式子与性质的结合,关键是理解,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.曲线y=xex+2x-1在点(0,-1)处的切线方程为y=3x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题P:函数y=lg(ax2+2x+1)的定义域为R;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若P∨Q是真命题,P∧Q是假命题;求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=cos17°cos23°-sin17°sin23°,b=2cos225°-1,c=$\frac{{\sqrt{3}}}{2}$,则a,b,c的大小关系(  )
A.b>a>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)
(1)当a=0时,判断函数f(x)的奇偶性;
(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a是实数,对函数f(x)=x2-2x+a2+3a-3和抛物线C:y2=4x,有如下两个命题:p:函数f(x)的最小值小于0;q:抛物线y2=4x上的动点$M(\frac{a^2}{4},a)$到焦点F的距离大于2.已知“?p”和“p∧q”都为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在圆的方程x2+y2+Dx+Ey+F=0中,若D2=E2>4F,则圆的位置满足(  )
A.截两坐标轴所得弦的长度相等B.与两坐标轴都相切
C.与两坐标轴相离D.上述情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知随机变量ξ~B(n,p),若$E(ξ)=\frac{5}{3}$,$D(ξ)=\frac{10}{9}$,则n=5,p=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=cos61°•cos127°+cos29°•cos37°,$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$,$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$,则a,b,c的大小关系是(  )
A.a<b<cB.a>b>cC.c>a>bD.a<c<b

查看答案和解析>>

同步练习册答案