精英家教网 > 高中数学 > 题目详情

【题目】设a是实数,f(x)=a﹣ (x∈R).
(1)证明不论a为何实数,f(x)均为增函数;
(2)若f(x)满足f(﹣x)+f(x)=0,解关于x的不等式f(x+1)+f(1﹣2x)>0.

【答案】
(1)证明:f(x)的定义域为R…(1分)

设x1<x2,则

=

因为

所以 即f(x1)<f(x2

所以,不论a何值f(x)为增函数


(2)解:因为f(﹣x)+f(x)=0

所以f(1﹣2x)=﹣f(2x﹣1)

又因为f(x+1)+f(1﹣2x)>0

所以f(x+1)>f(2x﹣1)…(9分)

又因为f(x)为增函数,所以x+1>2x﹣1

解得:x<2


【解析】(1)利用函数的单调性的定义直接证明即可.(2)判断函数的奇偶性,利用函数的单调性化简求解即可.
【考点精析】根据题目的已知条件,利用函数单调性的判断方法和函数单调性的性质的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 为椭圆 的左、右焦点,点在椭圆上,且面积的最大值为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于 两点, 的面积为1, ),当点在椭圆上运动时,试问是否为定值?若是定值,求出这个定值;若不是定值,求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中的奇函数是(
A.f(x)=x+1
B.f(x)=3x2﹣1
C.f(x)=2(x+1)3﹣1
D.f(x)═﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的化学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,…,后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求出这60名学生中化学成绩低于50分的人数;

(2)估计高二年级这次考试化学学科及格率(60分以上为及格);

(3)从化学成绩不及格的学生中随机调查1人,求他的成绩低于50分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 和点,动圆经过点且与圆相切,圆心的轨迹为曲线

(1)求曲线的方程;

(2)点是曲线轴正半轴的交点,点 在曲线上,若直线 的斜率分别是 ,满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域是
A.{x|x≥2}
B.{x|x≤2}
C.{x|x>2}
D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a≠0,函数f(x)= ,若f(1﹣a)=f(1+a),则a的值为(
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时, (万元).当年产量不小于80千件时, (万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.

(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;

(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:

古文迷

非古文迷

合计

男生

26

24

50

女生

30

20

50

合计

56

44

100

(Ⅰ)根据表中数据能否判断有的把握认为“古文迷”与性别有关?

(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;

(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为,求随机变量的分布列与数学期望.

参考公式: ,其中

参考数据:

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案