精英家教网 > 高中数学 > 题目详情

【题目】如图,设点是抛物线的焦点,直线与抛物线相切于点(点位于第一象限),并与抛物线的准线相交于点.过点且与直线垂直的直线交抛物线于另一点,交轴于点,连结

1)证明:为等腰三角形;

2)求面积的最小值.

【答案】1)证明见解析;(24

【解析】

(1)利用导数求出点P处的切线方程,由垂直关系写出法线方程,得到点Q坐标,由抛物线定义得到

2)先求出点AB的坐标,再求的表达式,利用直角三角形得到面积的函数关系,再求最大值.

1)设点P的坐标为

因为直线l与抛物线C相切,求导得,即

所以直线l的方程为:

得直线m的方程为:,即

因为,即

所以得,即为等腰三角形.

(或者求出切线与y轴的交点,可证点F为直角三角形斜边的中点,同样可证)

2)因为抛物线C的准线为,得

所以

联立方程组,得

因为,即

所以

面积为

当且仅当时,取到最小值4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,过点作平面的垂线,垂足为的交点是线段的中点.

1)求证:DE//平面

2)若四棱锥的体积为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,,,的中点,点,分别在线段,上运动(其中不与,重合,不与,重合),且,沿折起,得到三棱锥,则三棱锥体积的最大值为__________;当三棱锥体积最大时,其外接球的表面积的值为_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的零点是.

1)设曲线在零点处的切线斜率分别为,判断的单调性;

2)设的极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20两个数字排成7位的数码,其中“20”“02”各至少出现两次(如002002020202000220220等),则这样的数码的个数是(

A.54B.44C.32D.22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是棱的中点,点在对角线上运动.的面积取得最小值时,点的位置是(

A.线段的三等分点,且靠近点B.线段的中点

C.线段的三等分点,且靠近点D.线段的四等分点,且靠近点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列)的各项均为正整数,且.若对任意,存在正整数使得,则称数列具有性质.

1)判断数列与数列是否具有性质;(只需写出结论)

2)若数列具有性质,且,求的最小值;

3)若集合,且(任意.求证:存在,使得从中可以选取若干元素(可重复选取)组成一个具有性质的数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.是自然对数的底数)

1)求的单调递减区间;

2)若函数,证明上只有两个零点.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设动点在圆上,动线段的中点的轨迹为与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.

查看答案和解析>>

同步练习册答案