精英家教网 > 高中数学 > 题目详情
11.对任意的θ∈(0,$\frac{π}{2}$),不等式$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$≥x2-x-11恒成立,则实数x的取值范围是(  )
A.[-3,4]B.[0,2]C.[-$\frac{3}{2}$,$\frac{5}{2}$]D.[-4,5]

分析 利用基本不等式的性质得出$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$最小值.根据对任意的θ∈(0,$\frac{π}{2}$),不等式$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$≥x2-x-11恒成立,可得x2-x-11≤9,即可得出实数x的取值范围.

解答 解:∵θ∈(0,$\frac{π}{2}$),∴$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$=(sin2θ+cos2θ)($\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$)
=5+4tan2θ+$\frac{1}{ta{n}^{2}θ}$≥5+4=9,当且仅当tanθ=$\frac{\sqrt{2}}{2}$时取等号.
∵对任意的θ∈(0,$\frac{π}{2}$),不等式$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$≥x2-x-11恒成立,
∴x2-x-11≤9,
∴-4≤x≤5,
∴实数x的取值范围是[-4,5].
故选:D.

点评 本题考查了基本不等式的性质、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\left\{\begin{array}{l}{3x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$
(1)若方程f(x)=4有两个实根,求实数b的取值范围;
(2)若f(f($\frac{5}{6}$))=4,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,∠BAC=120°,AD为角A的平分线,AC=3,AB=6,则AD的长是(  )
A.2B.2或4C.1或2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l1:(a-2)x+4y=5-3a与直线l2:2x+(a+7)y=8垂直,则a=(  )
A.-4或-1B.4C.7或-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,已知AB是圆O的直径,点C,D是半圆弧的两个三等分点,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{AC}$=(  )
A.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$B.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$C.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{2}$xB.y=±2xC.y=±$\frac{1}{2}$xD.y=±$\frac{2\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线x2=4y的焦点为F,P为该抛物线在第一象限内的图象上的一个动点
(Ⅰ)当|PF|=2时,求点P的坐标;
(Ⅱ)求点P到直线y=x-10的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=f(x)的定义域为[-1,1],求函数y=f(x+$\frac{1}{2}$)•f(x-$\frac{1}{2}$)的定义域为[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.从0、2、4、6、8这五个数字中任取2个,从1、3、5、7、9这五个数字中任取1个.
(1)问能组成多少个没有重复数字的三位数?
(2)求在(1)中的这些三位数中任取一个三位数恰好能被5整除的概率.

查看答案和解析>>

同步练习册答案