精英家教网 > 高中数学 > 题目详情

△ABC中,a,b,c成等比数列,则cos(A-C)+cosB+cos2B=________.

1
分析:由题意可知,sin2B=sinAsinC,利用三角形的内角和,两角和与差的三角函数化简cos(A-C)+cosB+cos2B,然后利用二倍角公式化简即可.
解答:∵a、b、c三边成等比数列,
∴b2=ac.
由正弦定理及b2=ac可得:sin2B=sinAsinC,
∴cos(A-C)+cosB+cos2B
=cos(A-C)-cos(A+C)+cos2B
=2sinAsinC+cos2B
=2sin2B+(1-2sin2B)=1.
故答案为:1.
点评:本题考查三角函数和正弦定理及等比数列的知识,解题时要注意公式的合理选用.考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是A、B、C的对边.向量
m
=(2,0),
n
=(sinB,1-cosB)
(Ⅰ)若B=
π
3
.求
m
n

(Ⅱ)若
m
n
所成角为
π
3
.求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c三边成等差数列,求证:B≤60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A:B:C=4:2:1,证明
1
a
+
1
b
=
1
c

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a,b,c分别为角A,B,C的对边.若a(a+b)=c2-b2,则角C为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•静安区一模)在ρABC中,a、b、c 分别为∠A、∠B、∠C的对边,∠A=60°,b=1,c=4,则
a+b+c
sinA+sinB+sinC
=
2
39
3
2
39
3

查看答案和解析>>

同步练习册答案