精英家教网 > 高中数学 > 题目详情

 如图,是圆的直径,点是圆上异于的点,直线平面,,分别是,的中点.

(I)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;

(II)设(I)中的直线与圆的另一个交点为,且点满足.记直线与平面所成的角为,异面直线所成的角为,二面角的大小为,求证:.

解:(I),,

 

 

 

(II)连接DF,用几何方法很快就可以得到求证.(这一题用几何方法较快,向量的方法很麻烦,特别是用向量不能方便的表示角的正弦.个人认为此题与新课程中对立体几何的处理方向有很大的偏差.)

  

  

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省漳州市四地七校高三6月模拟考理科数学试卷(解析版) 题型:解答题

如图,是圆的直径,点在圆上,于点

平面

(1)证明:

(2)求平面与平面所成的锐二面角的余弦值.

 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省双流市外语学校高三9月月考理科数学试卷(解析版) 题型:解答题

如图,是圆的直径,点在圆上,于点平面

(Ⅰ)证明:

(Ⅱ)求平面与平面所成的锐二面角的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2012届云南省高三上期中文科数学试卷(解析版) 题型:填空题

 (本题满分12分)如图,是圆的直径,点在圆上,于点平面

(1)证明:

(2)求平面与平面所成的锐二面角的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三上学期第四次月考理科数学 题型:解答题

(本小题满分12分)

如图,是圆的直径,点在圆上,于点平面

(1)证明:

(2)求平面与平面所成的锐二面角的余弦值

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学理卷 题型:解答题

((本小题满分14分)

     如图,是圆的直径,点在圆上,于点

平面

(1)证明:

(2)求平面与平面所成的锐二面角的余弦值

 

 

查看答案和解析>>

同步练习册答案