精英家教网 > 高中数学 > 题目详情
5.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{2}}{2}$,椭圆上一点P满足|PF1|•|PF2|的最大值是2,O为坐标原点.
(I)求椭圆C1的方程;
(Ⅱ)若直线l与圆x2+y2=b2只有一个交点,并与椭圆C1交于不同的两点A、B,当$\frac{2}{3}$≤$\overrightarrow{OA}$•$\overrightarrow{OB}$≤$\frac{3}{4}$时,求△AOB面积S的最大值.

分析 (Ⅰ)由椭圆离心率可得a,c的关系,结合|PF1|•|PF2|的最大值是2求得a,再由隐含条件求得b,则椭圆方程可求;
(Ⅱ)设A(x1,y1),B(x2,y2),则设直线l的方程为x=my+n,由直线与圆x2+y2=1只有一个交点,得n2=m2+1,把x=my+n代入椭圆方程,可得$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=(1+m2)y1y2+mn(y1+y2)+n2=$\frac{{m}^{2}+1}{{m}^{2}+2}$,把S△AOB化为含有$\frac{{m}^{2}+1}{{m}^{2}+2}$的式子,结合$\frac{2}{3}$≤$\overrightarrow{OA}$•$\overrightarrow{OB}$≤$\frac{3}{4}$求△AOB面积S的取值范围,则最大值可求.

解答 解:(Ⅰ)由$e=\frac{c}{a}=\frac{\sqrt{2}}{2}$,得a=$\sqrt{2}c$,
由|PF1|•|PF2|≤$(\frac{|P{F}_{1}|+|P{F}_{2}|}{2})^{2}$=$\frac{4{a}^{2}}{4}={a}^{2}$,且|PF1|•|PF2|的最大值是2,得a2=2,
∴a=$\sqrt{2}$,则c=1,
∴b2=a2-c2=1,
则椭圆C1的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)圆x2+y2=b2=1.
依题知l的斜率不可能为零,设直线l的方程为x=my+n(m∈R).
∵直线x-my-n=0与圆x2+y2=1只有一个交点,
∴有:$\frac{|n|}{\sqrt{{m}^{2}+1}}=1$,得n2=m2+1.
设A(x1,y1),B(x2,y2),
联立$\left\{\begin{array}{l}{x=my+n}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,消去x整理得:(m2+2)y2+2mny+n2-2=0,
则y1+y2=-$\frac{2mn}{{m}^{2}+2}$,y1y2=$\frac{{n}^{2}-2}{{m}^{2}+2}$.
其判别式△=8(m2-n2+2)=8,
∵$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=(1+m2)y1y2+mn(y1+y2)+n2=$\frac{{m}^{2}+1}{{m}^{2}+2}$.
∴S△AOB=$\frac{1}{2}$|$\overrightarrow{OA}$||$\overrightarrow{OB}$|sin∠AOB=$\frac{1}{2}$|x1y2-x2y1|=$\frac{1}{2}$|n(y2-y1)|=$\frac{1}{2}$|n|×$\frac{\sqrt{△}}{{m}^{2}+2}$
=$\sqrt{2}$•$\sqrt{\frac{{m}^{2}+1}{{m}^{2}+2}•\frac{1}{{m}^{2}+2}}$=$\sqrt{2}$•$\sqrt{\frac{{m}^{2}+1}{{m}^{2}+2}•(1-\frac{{m}^{2}+1}{{m}^{2}+2})}$,
令t=$\frac{{m}^{2}+1}{{m}^{2}+2}$,则由$\frac{2}{3}$≤$\overrightarrow{OA}$•$\overrightarrow{OB}$≤$\frac{3}{4}$,知$\frac{2}{3}$≤t≤$\frac{3}{4}$,
∴$\frac{\sqrt{6}}{4}$≤S△AOB≤$\frac{2}{3}$.
∴△AOB面积S的最大值为$\frac{2}{3}$.

点评 本题考查圆锥曲线的性质和综合应用,解题时要注意向量的数量积公式、点到直线的距离公式的灵活运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.计算:
(1)$\root{4}{{(3-π{)^4}}}$+(0.008)${\;}^{\frac{1}{3}}$-(0.25)${\;}^{\frac{1}{2}}$×($\frac{1}{{\sqrt{2}}}$)-4
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2009)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱锥S-ABC,E,F分别在线段AB,AC上,EF∥BC,△ABC,△SEF均是等边三角形,且平面SEF⊥平面ABC,若BC=4,EF=a,O为EF的中点.
(1)求证:BC⊥SA.
(2)a为何值时,BE⊥平面SCO.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知直线C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),圆C2:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)当α=$\frac{π}{3}$时,求C1被C2截得的线段的长;
(Ⅱ)过坐标原点O作C1的垂线,垂足为A,当α变化时,求A点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:x2-4x-5≤0,命题q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,p∨q为真命题,p∧q为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=\left\{\begin{array}{l}2{x^3}+3{x^2}+m,0≤x≤1\\ mx+5,x>1\end{array}\right.$,若函数f(x)有且仅有两个零点,则实数m的取值范围是(-5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(-2,-1),B(2,1),直线AM,BM相交于点M,且它们的斜率之积为-$\frac{1}{2}$,点M的轨迹为曲线H.
(1)求曲线H的方程;
(2)过点P(-2,1)作斜率为k1,k2的两条直线l1,l2分别与曲线H交于C,D两点,且C,D关于原点对称,设点Q(-2,0)到直线l1,l2的距离分别为d1,d2且d1>d2,求k1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow{b}$=(1,cosθ),θ∈(0,$\frac{π}{2}$)
(1)若$\overrightarrow{a}$$•\overrightarrow{b}$=$\frac{7}{3}$,求sinθ+cosθ的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin(2θ+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点M(2,0),离心率为$\frac{1}{2}$.A,B是椭圆C上两点,且直线OA,OB的斜率之积为-$\frac{3}{4}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若射线OA上的点P满足|PO|=3|OA|,且PB与椭圆交于点Q,求$\frac{|BP|}{|BQ|}$的值.

查看答案和解析>>

同步练习册答案