精英家教网 > 高中数学 > 题目详情
13、(1+2x)(1-x)10展开式中x4的系数是
-30
.(用数字作答)
分析:展开式即(1+2x)(1-C101x+C102 x2-C103x3+C104 x4+…+C1010 x10),故展开式中x4的系数是 C410-2C310,化简球的结果.
解答:解:(1+2x)(1-x)10=(1+2x)(1-C101x+C102 x2-C103x3+C104 x4+…+C1010 x10),
故展开式中x4的系数是 C410-2C310=-30,
故答案为-30.
点评:本题考查二项式定理的应用,求得展开式中x4的系数是 C410-2C310,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(
x
-1)=-x
,则函数f(x)的表达式为(  )
A、f(x)=x2+2x+1(x≥0)
B、f(x)=x2+2x+1(x≥-1)
C、f(x)=-x2-2x-1(x≥0)
D、f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=loga(1-x),g(x)=loga(1+x),(a>0且a≠1).
(Ⅰ)设函数F(x)=f(x)-g(x),判断函数F(x)的奇偶性并证明;
(Ⅱ)若关于x的方程g(m+2x-x2)=f(x)有实数根,求实数m的范围;
(Ⅲ)当a>1时,不等式f(n-x)>
12
g(x)对任意x∈[0,1]恒成立,求实数n的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…anxn-1,则称数A可以表示成x进制形式,简记为A=
.
x~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(I)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式;
(II)记bn=
.
2~(a1)(a2)(a3)…(an-1)(an)
(n∈N*)
,若{an}是等差数列,且满足a1+a2=3,a3+a4=7,求bn=9217时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区模拟)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

同步练习册答案