精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相交,则双曲线C离心率的取值范围是
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离小于半径求得a和b的关系,进而利用c2=a2+b2求得a和c的关系,则双曲线的离心率可求.
解答: 解:∵双曲线渐近线为bx±ay=0,与圆(x-2)2+y2=1相交
∴圆心到渐近线的距离小于半径,即
2b
a2+b2
<1
∴3b2<a2
∴c2=a2+b2
4
3
a2
∴e=
c
a
2
3
3

∵e>1
∴1<e<
2
3
3

故答案为:(1,
2
3
3
)
点评:本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sinωx+
3
2
cosωx(ω>0)的周期为4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)将f(x)的图象沿x轴向右平移
2
3
个单位得到函数g(x)的图象,
P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中正视图是等边三角形,俯视图是半圆.现有一只蚂蚁从点A出发沿该几何体的侧面环绕一周回到A点,则蚂蚁所经过路程的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设x>-1,试比较ln(1+x)与x的大小;
(2)是否存在常数a∈N,使得a<
1
n
n
k=1
(1+
1
k
)
k
<a+1对任意大于1的自然数n都成立?若存在,试求出a的值并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程
x2
9-k
+
y2
k-1
=1表示焦点在y轴上的椭圆,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B的对边分别为a,b,则“A>B”是“a>b”的
 
条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在坐标原点,且焦点在y轴上.若抛物线上的点M(m,-3)到焦点的距离是5,则抛物线的准线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个广告气球被一束入射角为30°的平行光线照射,其投影是一个最长的弦长为5米的椭圆,则制作这个广告气球至少需要的面料是
 
m2

查看答案和解析>>

科目:高中数学 来源: 题型:

福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:①该福利彩票中奖率为50%;②每张中奖彩票的中奖奖金有5元,50元和150元三种;③顾客购买一张彩票获得150元奖金的概率为p,获得50元奖金的概率为2%.
(1)假设某顾客一次性花50元购买10张彩票,求该顾客中奖的概率;
(2)设福彩中心卖出一张彩票获得的资金为X元,求X的概率分布(用p表示);
(3)为了能够筹得资金资助福利事业,求p的取值范围.

查看答案和解析>>

同步练习册答案