精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数且 )曲线的参数方程为为参数,且),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为: ,曲线的极坐标方程为.

(1)求的交点到极点的距离;

(2)设交于点,交于点,当上变化时,求的最大值.

【答案】(1);(2)

【解析】

(1) 联立曲线的极坐标方程,求得交点极坐标的极径,由极径的几何意义即可得结果;(2)曲线的极坐标方程与曲线的极坐标方程联立得,曲线与曲线的极坐标方程联立得 ,利用辅助角公式与三角函数的有界性可得结果.

(1)联立曲线的极坐标方程得: ,解得,即交点到极点的距离为.

(2)曲线的极坐标方程为

曲线的极坐标方程为联立得

曲线与曲线的极坐标方程联立得

所以,其中的终边经过点

,即时,取得最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,随着一带一路倡议的推进,中国与沿线国家旅游合作越来越密切,中国到一带一路沿线国家的游客人也越来越多,如图是2013-2018年中国到一带一路沿线国家的游客人次情况,则下列说法正确的是(  )

①2013-2018年中国到一带一路沿线国家的游客人次逐年增加

②2013-2018年这6年中,2016年中国到一带一路沿线国家的游客人次增幅最小

③2016-2018年这3年中,中国到一带一路沿线国家的游客人次每年的增幅基本持平

A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆: 的离心率为,抛物线:轴所得的线段长等于.轴的交点为,过点作直线相交于点直线分别与相交于.

(1)求证:

(2),的面积分别为, ,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个铝合金窗分为上、下两栏,四周框架和中间隔档的材料为铝合金,宽均为6,上栏与下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为28800,设该铝合金窗的宽和高分别为,铝合金窗的透光部分的面积为.

(1)试用表示

(2)若要使最大,则铝合金窗的宽和高分别为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2013

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

6

年产量(万吨)

6.6

6.7

7

7.1

7.2

7.4

(1)根据表中数据,建立关于的线性回归方程

,

(2)若近几年该农产品每千克的价格(单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

①根据(1)中所建立的回归方程预测该地区2019()年该农产品的产量;

②当为何值时,销售额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在平面与半圆弧所在平面垂直,上异于的点

(1)证明:平面平面

(2)在线段上是否存在点,使得平面?说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,且点是该函数图象的一个最高点.

1)求函数的解析式;

2)求函数的单调增区间;

3)若,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用“神舟十一号”飞船进行新产品搭载实验,计划搭载新产品,要根据该产品的研制成本、产品质量、搭载实验费用和预计产生收益来决定具体安排,通过调查,搭载每件产品有关数据如表:

因素

产品

产品

备注

研制成本、搭载费用之和/万元

20

30

计划最大投资

金额300万元产品质量/千克

10

5

最大搭载

质量110千克预计收益/万元

80

60

——

则使总预计收益达到最大时, 两种产品的搭载件数分别为(  )

A. 9,4 B. 8,5 C. 9,5 D. 8,4

查看答案和解析>>

同步练习册答案