精英家教网 > 高中数学 > 题目详情
设直线与椭圆相交于两点,分别过轴作垂线,若垂足恰为椭圆的两个焦点,则等于(    ).
A.B.C.D.
A

分析:将直线方程与椭圆方程联立,得(3+4k2)x2=12.分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,说明A,B的横坐标是±1,即方程(3+4k2)x2=12的两个根为±1,代入求出k的值.
解:将直线与椭圆方程联立,
化简整理得(3+4k2)x2=12(*)
因为分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,
故方程的两个根为±1.代入方程(*),得k=
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知点P是椭圆C:上的动点,F1F2分别为左、右焦点,O为坐标原点,则的取值范围是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知椭圆的焦点为F1,F2,点P为椭圆上任意一点,过F2的外角平分线的垂线,垂足为点Q,过点Q作轴的垂线,垂足为N,线段QN的中点为M,则点M的轨迹方程为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设集合A={1,2,3,4},m,n∈A,则方程表示焦点在x轴上的椭圆有    个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的两焦点为,并且经过点.
(1)求椭圆的方程;
(2)已知圆:,直线:,证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为l.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(5,0)和⊙B:,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q,则点Q(x,y)所满足的轨迹方程为  ( ▲ )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆M: 的左,右焦点分别为·的最大值的取值范围是〔〕,则椭圆M的离心率的取值范围是
A.B.C.D.

查看答案和解析>>

同步练习册答案