精英家教网 > 高中数学 > 题目详情

【题目】对于定义域相同的函数,若存在实数使,则称函数是由“基函数”生成的.

(1)若函数是“基函数”生成的,求实数的值;

(2)试利用“基函数”生成一个函数,且同时满足:①是偶函数;②在区间上的最小值为.求函数的解析式.

【答案】(1) . (2)

【解析】

1)根据基函数的定义列方程,比较系数后求得的值.2)设出的表达式,利用为偶函数,结合偶函数的定义列方程,化简求得,由此化简的表达式,构造函数,利用定义法证得上的单调性,由此求得的最小值,也即的最小值,从而求得的最小值,结合题目所给条件,求出的值,即求得的解析式.

解:(1)由已知得

,所以.

(2)设,则.

,得

整理得,即

对任意恒成立,所以.

所以

.

,令,则

任取,且

因为,且

所以,故

,所以单调递增,

所以,且当时取到“”.

所以

在区间的最小值为

所以,且,此时,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1 , l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,E,F分别是AB,PD的中点,若PA=AD=3,CD=
①求证:AF∥平面PCE
②求证:平面PCE⊥平面PCD
③求直线FC与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在(0,+∞)上的增函数,且满足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个正方体图形中,为正方体的两个顶点,分别为其所在棱的中点,能得出平面的图形的序号是(  )

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.

(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)

(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求上的值域;

(2)求在区间的最小值,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列a1,a2,…,an,…中的每一项都不为0.求证:{an}为等差数列的充要条件是:对任何n∈N+,都有

查看答案和解析>>

同步练习册答案