精英家教网 > 高中数学 > 题目详情
7.设实数a,b满足2a+b=9.
(1)若|9-b|+|a|<3,求a的取值范围;
(2)求|3a-b|+|a-2b|的最小值.

分析 (1)由条件可得3|a|<3,利用绝对值不等式的解法,求得a的范围.
(2)要求的式子即|5a-9|+|5a-18|,再利用绝对值三角不等式求得它的最小值.

解答 解:实数a,b满足2a+b=9.
(1)∵|9-b|+|a|=|2a|+|a|=3|a|<3,∴|a|<1,∴-1<a<1,故要求的a的取值范围为(-1,1).
(2)求|3a-b|+|a-2b|=|3a-(9-2a)|+|a-2(9-2a)|=|5a-9|+|5a-18|≥|(5a-9)-(5a-18)|=9,
故|3a-b|+|a-2b|的最小值为9.

点评 本题主要考查绝对值不等式的解法,绝对值三角不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设f(x)=2x+3x-8,则方程f(x)=0的根落在区间(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线y2=2px的准线方程是x=-2,则p的值是(  )
A.$-\frac{1}{8}$B.$\frac{1}{8}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若双曲线C与椭圆x2+4y2=64有相同的焦点,它的一条渐近线方程是$x+\sqrt{3}y=0$,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=$\frac{[x]}{x}$(x>0),则给出以下四个结论正确的是(  )
A.函数f(x)的值域为(0,1]
B.函数f(x)没有零点
C.函数f(x)是(0,+∞)上的减函数
D.函数g(x)=f(x)-a有且仅有3个零点时$\frac{3}{4}$<a≤$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:
[10.75,10.85)3;[10.85,10.95)9;[10.95,11.05)13;
[11.05,11.15)16;[11.15,11.25)26;[11.25,11.35)20;
[11.35,11.45)7;[11.45,11.55)4;[11.55,11.65)2;
估计数据落在[10.95,11.35)范围内的频率为(  )
A..035B.0.5C.0.75D.0.95

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组的频数为12.则 样本容量为150.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列$\left\{{\frac{2n-1}{a_n}}\right\}$的前n项和Tn
(Ⅲ)数列{bn}满足bn+1=an+bn(n∈N*),且b1=3.若不等式${log_2}({b_n}-2)<\frac{3}{16}{n^2}+t$对任意n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图:AB是抛物线y2=2px(p>0)过焦点F的一条弦,设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),相应的准线为l.
证明:
(1)以AB为直径的圆必与准线l相切;
(2)|AB|=2(x0+$\frac{p}{2}$)(焦点弦长与中点关系);
(3)|AB|=x1+x2+p;
(4)x1•x2=$\frac{{p}^{2}}{4}$,y1•y2=-p2

查看答案和解析>>

同步练习册答案