精英家教网 > 高中数学 > 题目详情
已知向量,设函数
(1)若f(x)的最小正周期是2π,求f(x)的单调递增区间;
(2)若f(x)的图象的一条对称轴是,(0<ω<2),求f(x)的周期和值域.
【答案】分析:(1)若函数的最小正周期为2π,结合正弦型函数中T=,我们易求出ω的值,进行给出函数的解析式,然后再根据正弦型函数求单调区间的方法,即可求出f(x)的单调递增区间;
(2)若f(x)的图象的一条对称轴是,(0<ω<2),则当时,函数的相位角,应落在Y轴上,根据(0<ω<2)我们易给出ω的值,然后求出函数的解析式,然后再根据正弦型函数求周期和值域的方法,即可求出f(x)的周期和值域.
解答:解:(1)
=
=



为单调递增区间;
(2)∵是函数的一条对称轴

∴ω=3k+1
又∵0<ω<2∴当k=0时,ω=1

∴周期为π,值域为
点评:函数y=Asin(ωx+φ)(A>0,ω>0)中,最大值或最小值由A确定,由周期由ω决定,即要求三角函数的周期与最值一般是要将其函数的解析式化为正弦型函数,再根据最大值为|A|,最小值为-|A|,周期T=进行求解.如果求其在区间上的值域和最值,则要结合图象进行讨论.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省威海市乳山一中高三(上)12月月考数学试卷(文科)(解析版) 题型:解答题

已知向量,设函数的图象关于直线对称,其中ω为常数,且ω∈(0,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若将y=f(x)图象上各点的横坐标变为原来的,再将所得图象向右平移个单位,纵坐标不变,得到y=h(x)的图象,若关于x的方程h(x)+k=0在区间上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛市黄岛开发区一中高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知向量,设函数,若函数g(x)的图象与f(x)的图象关于坐标原点对称.
(Ⅰ)求函数g(x)在区间[-]上的最大值,并求出此时x的值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若f(A)-g(A)=,b+c=7,△ABC的面积为2,求边a的长.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市潼南县古溪中学高三(上)第二次月考数学试卷(解析版) 题型:解答题

已知向量,设函数,x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若,求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省沈阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知向量,设函数,x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若,求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三第七次模拟考试文科数学试卷(解析版) 题型:解答题

已知向量,设函数.

(Ⅰ)求函数的最小正周期;

(Ⅱ)在中,若的面积为,求实数的值.

 

查看答案和解析>>

同步练习册答案