精英家教网 > 高中数学 > 题目详情
11.命题“?x∈R,x2+x+1>0”的否定为(  )
A.?x∈R,x2+x+1≤0B.?x∈R,x2+x+1≤0C.?x∈R,x2+x+1<0D.?x∈R,x2+x+1>0

分析 根据含有量词的命题的否定为:将任意改为存在,结论否定,即可写出命题的否定.

解答 解:由题意?x∈R,x2+x+1>0,否定是?x∈R,x2+x+1≤0
故选:B

点评 本题的考点是命题的否定,主要考查含量词的命题的否定形式:将任意与存在互换,结论否定即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)为R上的增函数,求证:a+b<0的充要条件是f(a)+f(b)<f(-a)+f(-b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a,b,c分别为△ABC的内角A,B,C的对边,且acosC+(c-2b)cosA=0.
(Ⅰ)求A;
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},则P∩Q=(  )
A.[-1,3]B.[1,3]C.[1,2]D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(1+ax)-$\frac{2x}{x+2}$(a>0)
(1)当a=$\frac{1}{2}$ 时,求f(x) 的极值;
(2)若a∈($\frac{1}{2}$,1)时f(x) 存在两个极值点x1,x2,试比较f(x1)+f(x2) 与f(0)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列等式:
(1)$\overrightarrow{a}$•$\overrightarrow{0}$=$\overrightarrow{0}$;
(2)$\overrightarrow{0}$•$\overrightarrow{a}$=$\overrightarrow{0}$;
(3)若$\overrightarrow{a}$,$\overrightarrow{b}$同向共线,则$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|;
(4)$\overrightarrow{a}$≠0,$\overrightarrow{b}$≠0,则$\overrightarrow{a}$•$\overrightarrow{b}$≠0;
(5)$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$•$\overrightarrow{b}$中至少有一个为0;
(6)若$\overrightarrow{a}$,$\overrightarrow{b}$均是单位向量,则$\overrightarrow{a}$2=$\overrightarrow{b}$2
以上成立的是(  )
A.(1)(2)(5)(6)B.(3)(6)C.(2)(3)(4)D.(6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(sin x)=x且x∈[0,$\frac{π}{2}$],则f($\frac{1}{2}$)=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为$\frac{1}{2}$,且点P在图中阴影部分(包括边界)运动.若$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{BC}$,其中x,y∈R,则4x-y的最大值为(  )
A.$3-\frac{{\sqrt{2}}}{4}$B.$3+\frac{{\sqrt{5}}}{2}$C.2D.$3+\;\frac{{\sqrt{17}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=lnx-(a+1)x(a∈R)
(1)当a=0时,讨论函数f(x)的单调性;
(2)当a>-1时,函数f(x)有最大值且最大值大于-2时,求a的取值范围.

查看答案和解析>>

同步练习册答案