精英家教网 > 高中数学 > 题目详情
9.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=$\frac{π}{3}$,记椭圆和双曲线的离心率分别为e1,e2,则$\frac{1}{{e}_{1}{e}_{2}}$的最大值为(  )
A.3B.$\frac{4\sqrt{3}}{3}$C.2D.$\frac{2\sqrt{3}}{3}$

分析 先设椭圆的长半轴长为a1,双曲线的半实轴长a2,焦距2c.因为涉及椭圆及双曲线离心率的问题,所以需要找a1,a2,c之间的关系,而根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根据余弦定理可得到:$\frac{1}{{{e}_{1}}^{2}}+\frac{3}{{{e}_{2}}^{2}}$=4,利用基本不等式可得结论.

解答 解:如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:|PF1|+|PF2|=2a1,|PF1|-|PF2|=2a2
∴|PF1|=a1+a2,|PF2|=a1-a2
设|F1F2|=2c,∠F1PF2=$\frac{π}{3}$,则:
在△PF1F2中由余弦定理得,
4c2=(a1+a22+(a1-a22-2(a1+a2)(a1-a2)cos$\frac{π}{3}$
∴化简得:a12+3a22=4c2
该式可变成:$\frac{1}{{{e}_{1}}^{2}}+\frac{3}{{{e}_{2}}^{2}}$=4,
∴$\frac{1}{{{e}_{1}}^{2}}+\frac{3}{{{e}_{2}}^{2}}$=4≥$\frac{2\sqrt{3}}{{e}_{1}{e}_{2}}$
∴$\frac{1}{{e}_{1}{e}_{2}}$≤$\frac{2\sqrt{3}}{3}$,
故选:D.

点评 本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,解决本题的关键是根据所得出的条件灵活变形,求出焦点三角形的边长来.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:x2=16y的焦点为F,直线l过点F交抛物线C于A、B两点.
(1)设A(x1,y1),B(x2,y2),求$\frac{1}{y_1}+\frac{1}{y_2}$的取值范围;
(2)是否存在定点Q,使得无论AB怎样运动都有∠AQF=∠BQF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC中,AB=AC,D是△ABC外接圆劣弧$\widehat{AC}$上的点(不与点A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为1+$\frac{\sqrt{3}}{2}$,求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在正三棱柱ABC-A1B1C1中,侧棱与底面的边长都是2,D是AC的中点.
(1)求证:BD⊥A1D;
(2)求直线BA1与平面AA1C1C所成角的余弦值;
(3)求三棱锥A1-ABD的体积;
(4)求三角形A1BD的面积,并求出点A到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在正三棱锥P-ABC中,AB=6,PA=5.
(1)求此三棱锥的体积V;
(2)求二面角P-AB-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC为锐角三角形,AB≠AC,以BC为直径的圆分别交边AB和AC于点M和N,记BC得中点为O,∠BAC的平分线和∠MON的平分线交于点R.证明:△BMR的外接圆和△CNR的外接圆有一个交点在BC上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.
(1)求证:平面AA1C⊥平面BA1C.
(2)求几何体A1-ABC的体积V的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式ax2+2ax+4≥0对一切x恒成立,则a的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)是奇函数,且在(0,+∞)内是单调递增函数,若f(3)=0,则不等式xf(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

同步练习册答案