精英家教网 > 高中数学 > 题目详情
已知在数列{an}中,a1=7,an+1=
7anan+7
,计算这个数列的前4项,并猜想这个数列的通项公式.
分析:根据递推公式,分别递推出数列的前4项,利用前4项数列项的特点,猜想数列的通项公式.
解答:解:∵a1=7,an+1=
7an
an+7

a2=
7a1
a1+7
=
7×7
7+7
=
7×7
14
=
7
2

a3=
7a2
a2+7
=
7
2
7
2
+7
=
7×7
7+14
=
7×7
21
=
7
3

a4=
7a3
a3+7
=
7
3
7
3
+7
=
7×7
7+21
=
7×7
28
=
7
4

∴由前四项可得数列的分子为常数7,分母为1,2,3,4,即为正整数,
∴猜想数列的通项公式为an=
7
n
,n∈N
点评:本题主要考查递推数列的应用,以及利用数列的前几项,归纳猜想数列的通项公式,考查学生的观察能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
1
2
)

(Ⅰ) 求Sn的表达式;
(Ⅱ) 设bn=
Sn
2n+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,an≠0,(n∈N*).求证:“{an}是常数列”的充要条件是“{an}既是等差数列又是等比数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•河北区一模)已知在数列{an}中,Sn是前n项和,满足Sn+an=n,(n=1,2,3,…).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)令bn=(2-n)(an-1)(n=1,2,3,…),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=
1
2
,Sn是其前n项和,且Sn=n2an-n(n-1).
(1)证明:数列{
n+1
n
Sn}
是等差数列;
(2)令bn=(n+1)(1-an),记数列{bn}的前n项和为Tn
①求证:当n≥2时,Tn2>2(
T2
2
+
T3
3
+…+
Tn
n
)

②)求证:当n≥2时,bn+1+bn+2+…+b2n
4
5
-
1
2n+1

查看答案和解析>>

同步练习册答案