精英家教网 > 高中数学 > 题目详情
已知是两条异面直线,,那么的位置关系____________________。
异面或相交
就是不可能平行
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

菱形ABCD在平面α内,PC⊥α,则PA与对角线BD的位置关系是(    )
A.平行B.相交但不垂直
C.垂直相交D.异面垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方体ABCD—A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求证:如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线互相平行.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面内两直线有三种位置关系:相交,平行与重合。已知两个相交平面与两直线,又知内的射影为,在内的射影为。试写出满足的条件,使之一定能成为是异面直线的充分条件                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知如图,P平面ABC,PA=PB=PC,∠APB=∠APC=60°,∠BPC=90°求证:平面ABC⊥平面PBC

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

△ABC的三个顶点分别是A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=4,BC=2,CC1=3,
CE
=2
EC1

(1)求点D1到平面BDE的距离;
(2)求直线A1B与平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直四棱柱A1B1C1D1ABCD中,当底面四边形ABCD满足条件        时,有A1CB1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).

查看答案和解析>>

同步练习册答案