精英家教网 > 高中数学 > 题目详情
(本题满分14分)
抛物线D以双曲线的焦点为焦点.
(1)求抛物线D的标准方程;
(2)过直线上的动点P作抛物线D的两条切线,切点为AB.求证:直线AB过定点Q,并求出Q的坐标;
(3)在(2)的条件下,若直线PQ交抛物线DMN两点,求证:|PM|·|QN|=|QM|·|PN|
(1)
(2)(1,1)
(3)证明见解析。
(1)由题意,
所以,抛物线D的标准方程为                                         …………3分
(2)设

抛物线D在点A处的切线方程为…………4分
而A点处的切线过点

同理,
可见,点AB在直线上.

所以,直线AB过定点Q(1,1)                                                               …………6分
(3)设
直线PQ的方程为



由韦达定理,                     …………9分


…………12分
代入方程(*)的左边,得
(*)的左边

=0.
因而有|PM|·|QN|=|QM|·|PN|.                                                    …………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分8分,第3小题满分7分.
已知抛物线为常数),为其焦点.
(1)写出焦点的坐标;
(2)过点的直线与抛物线相交于两点,且,求直线的斜率;
(3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆与双曲线均为正数)有共同的焦点F1F2P是两曲线的一个公共点,则等于           (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆方程为,O为原点,F为右焦点,点M是椭圆右准线上(除去与轴的交点)的动点,过F作OM的垂线与以OM为直线的圆交于点N,则线段ON的长为             (   )
A.B.C.D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点。
(1)用表示A,B之间的距离;
(2)证明:的大小是与无关的定值,并求出这个值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面内称横坐标为整数的点为“次整点”.过函数图象上任意两个次整点作直线,则倾斜角大于45°的直线条数为.
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设圆过点P(0,2), 且在轴上截得的弦RG的长为4.
(1)求圆心的轨迹E的方程;                                                                                                        
(2)过点(0,1),作轨迹的两条互相垂直的弦,设 的中点分别为,试判断直线是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线与双曲线没有公共点,则实数的取值范围是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


Ahyperbola(双曲线)wjthvertices(顶点)(-2,5)and(-2,-3),has  an  asynptote(渐近线)that passes  the   point(2.5)  Then  an  equarionk  of  the  hyperbola  is
A.B.
C.D.

查看答案和解析>>

同步练习册答案