精英家教网 > 高中数学 > 题目详情
12.已知${(\root{4}{{\frac{1}{x}}}+2•\root{3}{x^2})^n}$二项展开式中第三项的系数为180,求:
(Ⅰ)含x3的项;
(Ⅱ)二项式系数最大的项.

分析 (Ⅰ)根据第三项的系数为180求得n=10,再求出通项公式,在通项公式中,令x的幂指数等于零,求得r的值,可得含x3的项.
(Ⅱ)二项式系数最大的项为中间项,再利用通项公式求得结果.

解答 解:(Ⅰ)由题设知:第三项的系数为 ${2^2}C_n^2=180$,${C}_{n}^{2}$=45,求得n=10,
可得通项公式为 ${T_{r+1}}=C_{10}^r{({x^{-\frac{1}{4}}})^{10-r}}•{(2•{x^{\frac{2}{3}}})^r}={2^r}C_{10}^r{x^{\frac{11r-30}{12}}}$,令$\frac{11r-30}{12}=3$,得r=6,
∴含x3的项为${T_7}={2^6}C_{10}^6{x^3}$.
(Ⅱ)二项式系数最大的项为中间项,即${T_6}={2^5}C_{10}^5{x^{\frac{55-30}{12}}}=8064{x^{\frac{25}{12}}}$.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知:|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{2}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$,要λ$\overrightarrow{b}$-$\overrightarrow{a}$与$\overrightarrow{a}$垂直,则λ为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知角α的顶点在坐标原点,始边在x轴的正半轴上,其终边上有一点P(5,-12),则secα=$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对于数89,规定第一次操作为82+92=145,第2次操作为12+42+52=42,第3次操作为42+22=20,如此反复操作,则第2015操作后得到的数是58.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0,如果P=$\sqrt{a}$+$\sqrt{a+3}$,Q=$\sqrt{a+1}$+$\sqrt{a+2}$,则(  )
A.P>QB.P<Q
C.P=QD.P与Q无法比较大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,
(1)求函数f(x)的解析式; 
(2)解不等式f(x)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a-1)x2+bx(a,b为常数)在x=1和x=4处取得极值.
(1)求函数f(x)的解析式;
(2)当x∈[-2,2]时,y=f(x)的图象在直线5x+2y-c=0的下方,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.6本不同的书分给甲、乙、丙三个人,一人得三本,一人得两本,一人得一本的分法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=ex(sinx-cosx)(0≤x≤2015π),求则函数f(x)的各极小值之和为-$\frac{{e}^{2π}(1-{e}^{2014π})}{1-{e}^{2π}}$.

查看答案和解析>>

同步练习册答案