精英家教网 > 高中数学 > 题目详情
如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,点E是PD的中点.
(Ⅰ)求证:PB∥平面AEC;
(Ⅱ)求证:AC⊥PB.
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:(Ⅰ)欲证PB∥面AEC,根据直线与平面平行的判定定理可知只需证PB与面AEC内一直线平行即可,连接BD交AC于点O,并连接EO,根据中位线可知EO∥PB,PB?面AEC,EO?面AEC满足定理所需条件.
(Ⅱ)欲证AC⊥PB,可先证AC⊥面PAB,根据直线与平面垂直的判定定理可知只需证AC与面PAB内两相交直线垂直,根据PA⊥面ABCD,AC?面ABCD,可得PA⊥AC,又因AB⊥AC,PA∩AC=A,PA?面PAB,AB?面PAB,满足定理所需条件;
解答: 证明:(Ⅰ)连接BD交AC于点O,并连接EO,
∵四边形ABCD为平行四边形,
∴O为BD的中点又∵E为PD的中点,
∴在△PDB中EO为中位线,EO∥PB,
∵PB?面AEC,EO?面AEC∴PB∥面AEC.
(Ⅱ)∵PA⊥面ABCD,AC?面ABCD,∴PA⊥AC,
又∵AB⊥AC,PA∩AC=A,PA?面PAB,AB?面PAB,
∴AC⊥面PAB,
∴AC⊥PB.
点评:本题考查了空间两直线的位置关系,以及直线与平面平行的判定等有关知识,考查学生空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ln(1+x)
1-x
的定义域为M,g(x)=x2的值域为N,求M∪(∁RN)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下给出一个算法的程序框图(如图所示),根据该程序框图回答问题.
(1)若输入的四个数是5,3,8,12,则最后输出的结果是什么?
(2)该算法是为什么问题而设计的?写出算法的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y满足条件
x-y+5≥0
x+y≥0
x≤3.
则2x+4y的最小值为(  )
A、-6B、6C、-12D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,F为抛物线C:y2=4
3
x的焦点,P是C上一点,若|PF|=3
3
,则△OPF的面积为(  )
A、2
3
B、3
2
C、3
3
D、6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输入的N是5,那么输出的P是(  )
A、1B、24C、120D、720

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知海岛A与海岸公路BC的距离为50km,B、C间的距离为100km,从A到C,必须先坐船到BC上某一点D,船速为25km/h,再乘汽车,车速为50km/h.
设∠BAD=θ.记∠BAD=α(α为确定的锐角,满足tanα=
1
2

(1)试将由A到C所用时间t表示为θ的函数t(θ),并指出函数的定义域;
(2)问θ为多少时,使从A到C所用时间最少?并求出所用的最少时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2x2-x+3+
x2-x
的最小值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2-2x  
(1)当a=1时,?x0∈[1,e],使不等式f(x0)≤m,求实数m的取值范围;
(2)若a=-
1
2
,且关于x的方程f(x)=-
1
2
x+b在[1,4]上恰有两个不等的实根,求实数b的取值范围;
(3)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.

查看答案和解析>>

同步练习册答案