20£®Éèm¡ÊR£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨mx£¬y+1£©£¬ÏòÁ¿$\overrightarrow{b}$=£¨x£¬y-1£©£¬$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬¶¯µãM£¨x£¬y£©µÄ¹ì¼£ÎªE£¬OÊÇ×ø±êÔ­µã
£¨1£©Çó¹ì¼£EµÄ·½³Ì£¬²¢ËµÃ÷¸Ã·½³ÌËù±íʾÇúÏßµÄÐÎ×´
£¨2£©ÒÑÖªm=$\frac{1}{4}$£¬Ö±ÏßlÓë¸ÃÇúÏß½»ÓÚA¡¢BÁ½µã£¬ÈôOA¡ÍOB£¬ÇóÖ¤£º$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$ÊÇÒ»¸ö¶¨Öµ£®

·ÖÎö £¨1£©ÓÉ$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬¿ÉµÃ$\overrightarrow{a}$•$\overrightarrow{b}$=0£¬´úÈë×ø±ê»¯¼òÕûÀí¼´µÃ¹ì¼£EµÄ·½³Ìmx2+y2=1£®´ËΪ¶þÔª¶þ´ÎÇúÏߣ¬¿É·Öm=0¡¢m=1¡¢m£¾0ÇÒm¡Ù1ºÍm£¼0ËÄÖÖÇé¿öÌÖÂÛ£»
£¨2£©µ±m=$\frac{1}{4}$ʱ£¬¹ì¼£EµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£¬±íʾÍÖÔ²£¬ÉèÔ²µÄ·½³ÌΪx2+y2=r2£¨0£¼r£¼1£©£¬µ±ÇÐÏßбÂÊ´æÔÚʱ£¬¿ÉÉèÔ²µÄÈÎÒ»ÇÐÏß·½³ÌΪy=kx+t£¬ÓÉÖ±ÏߺÍÔ²ÏàÇпɵÃkºÍtµÄ¹Øϵ£¬ÓÉOA¡ÍOB£¬ËùÒÔx1x2+y1y1=0£¬Ö»ÐèÁªÁ¢Ö±ÏߺÍÔ²µÄ·½³Ì£¬ÏûÔª£¬Î¬´ï¶¨Àí£¬ÓÖ¿ÉÒԵõ½kºÍtµÄ¹Øϵ£¬ÕâÑù¾Í¿É½â³ör£®µ±ÇÐÏßбÂʲ»´æÔÚʱ£¬´úÈë¼ìÑé¼´¿É£®ÔÙÀûÓÃÉäÓ°¶¨Àí¼´¿ÉÖ¤Ã÷½áÂÛ£®

½â´ð ½â£º£¨1£©ÒòΪ$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬
ËùÒÔ$\overrightarrow{a}$•$\overrightarrow{b}$=0£¬¼´£¨mx£¬y+1£©•£¨x£¬y-1£©=0£¬
¹Êmx2+y2-1=0£¬¼´mx2+y2=1£®
µ±m=0ʱ£¬¸Ã·½³Ì±íʾÁ½ÌõÖ±Ïߣ»
µ±m=1ʱ£¬¸Ã·½³Ì±íʾԲ£»
µ±m£¾0ÇÒm¡Ù1ʱ£¬¸Ã·½³Ì±íʾÍÖÔ²£»
µ±m£¼0ʱ£¬¸Ã·½³Ì±íʾ˫ÇúÏߣ®
£¨¢ò£©µ±m=$\frac{1}{4}$ʱ£¬¹ì¼£EµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£¬
ÉèÔ²ÐÄÔÚÔ­µãµÄÔ²£¬Ê¹µÃ¸ÃÔ²µÄÈÎÒâÒ»ÌõÇÐÏßÓë¹ì¼£EºãÓÐÁ½¸ö½»µãA£¬B£¬Ô²µÄ·½³ÌΪx2+y2=r2£¨0£¼r£¼1£©£¬
µ±ÇÐÏßбÂÊ´æÔÚʱ£¬¿ÉÉèÔ²µÄÈÎÒ»ÇÐÏß·½³ÌΪy=kx+t£¬
A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ËùÒÔ$\frac{|t|}{\sqrt{1+{k}^{2}}}$=r£¬
¼´t2=r2£¨1+k2£©£®¢Ù
ÒòΪOA¡ÍOB£¬ËùÒÔx1x2+y1y1=0£¬
¼´x1x2+£¨kx1+t£©£¨kx2+t£©=0£¬
ÕûÀíµÃ£¨1+k2£©x1x2+kt£¨x1+x2£©+t2=0£®¢Ú
ÓÉ·½³Ì×é$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=+tkx}\end{array}\right.$
ÏûÈ¥yµÃ£¨1+4k2£©x2+8ktx+4t2-4=0£®¢Û
ÓÉΤ´ï¶¨Àíx1+x2=-$\frac{8kt}{1+4{k}^{2}}$£¬x1x2=$\frac{4{t}^{2}-4}{1+4{k}^{2}}$
´úÈë¢Úʽ²¢ÕûÀíµÃ
£¨1+k2£©$\frac{4{t}^{2}-4}{1+4{k}^{2}}$-kt•$\frac{8kt}{1+4{k}^{2}}$+t2=0£¬
¼´5t2=4+4k2£®
½áºÏ¢ÙʽÓÐ5r2=4£¬r=$\frac{2\sqrt{5}}{5}$¡Ê£¨0£¬1£©£¬
µ±ÇÐÏßбÂʲ»´æÔÚʱ£¬x2+y2=$\frac{4}{5}$Ò²Âú×ãÌâÒ⣬
¹ÊËùÇóÔ²µÄ·½³ÌΪx2+y2=$\frac{4}{5}$£®
ËùÒÔ$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$=$\frac{1}{AC•AB}$+$\frac{1}{BC•AB}$=$\frac{1}{AC•BC}$=$\frac{5}{4}$£®

µãÆÀ ±¾Ì⿼²éÇó¹ì¼£·½³Ì¡¢¼°·½³ÌËù±íʾµÄÇúÏß¡¢Ö±ÏßÓëÔ²¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØϵµÈ֪ʶ£¬¿¼²é¼ÆËãÄÜÁ¦ºÍ·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬OΪÖÐÏßAMÉϵĶ¯µã£®
£¨1£©Ö¤Ã÷£º$\overrightarrow{OB}$+$\overrightarrow{OC}$=2$\overrightarrow{OM}$
£¨2£©Éè|$\overrightarrow{AM}$|=2£¬$\overrightarrow{OM}$=t$\overrightarrow{AM}$£¨0¡Üt¡Ü1£©£¬ÊÔ°Ñ$\overrightarrow{OA}$•£¨$\overrightarrow{OB}+\overrightarrow{OC}$£©±íʾΪtµÄº¯Êýf£¨t£©£¬²¢Çóµ±OÔÚAMÉϺδ¦Ê±£¬f£¨t£©µÄÖµ×îС£¬×îСֵÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòÊÇ£¨0£¬+¡Þ£©£¬f£¨xy£©=f£¨x£©+f£¨y£©£¬ÇÒµ±x£¾1ʱ£¬f£¨x£©£¾0£®
£¨1£©Çóf£¨1£©µÄÖµ£»
£¨2£©Ö¤Ã÷£ºf£¨x£©ÔÚ¶¨ÒåÓòÉÏÊÇÔöº¯Êý£»
£¨3£©½â²»µÈʽf£¨x£¨x+$\frac{1}{2}$£©£©¡Ü0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ºÐ×ÓÀï¹²ÓдóСÏàͬµÄ3Ö»°×Çò£¬1Ö»ºÚÇò£®Èô´ÓÖÐËæ»úÃþ³öÁ½Ö»Çò£¬ÔòËüÃÇÑÕÉ«²»Í¬µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{2}{3}$C£®$\frac{1}{4}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Å×ÎïÏßy2=4x£¬OΪԭµã£¬ÏÒPQ¹ýA£¨3£¬2£©µãÇÒÒÔAΪÖе㣮
£¨1£©ÇóPQµÄ·½³Ì£»
£¨2£©¹ýPƽÐÐxÖáµÄÖ±ÏßÓë×¼Ïß½»ÓÚM£¬Ö¤Ã÷£ºQ¡¢O¡¢MÈýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªÔÚ¡÷ABCÖУ¬3sinA+4cosB=6£¬4sinB+3cosA=1£¬ÔòsinC=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®-$\frac{1}{2}$C£®-$\frac{{\sqrt{3}}}{2}$D£®-$\frac{{\sqrt{3}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¶¨ÒåÔÚRÉϵÄżº¯Êýf £¨x£©Âú×㣺¶ÔÈÎÒâµÄx1¡¢x2¡Ê£¨-¡Þ£¬0]£¨ x1¡Ùx2£©£¬ÓУ¨x2-x1£©[f £¨x2£©-f £¨x1£©]£¾0£¬Ôòµ±n¡ÊN*ʱ£¬ÓУ¨¡¡¡¡£©
A£®f £¨-n£©£¼f £¨n-1£©£¼f £¨n+1£©B£®f £¨n+1£©£¼f £¨-n£©£¼f £¨n-1£©
C£®f £¨n-1£©£¼f £¨-n£©£¼f £¨n+1£©D£®f £¨n+1£©£¼f £¨n-1£©£¼f £¨-n£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆË㶨»ý·Ö
£¨1£©${¡Ò}_{0}^{¦Ð}$£¨sinx-cosx£©dx£»
£¨2£©${¡Ò}_{0}^{2}$|1-x|dx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÊýÁÐ{an}ºÍ{bn}ÖУ¬a1=2£¬ÇÒ¶ÔÈÎÒâ×ÔÈ»Êýn¶¼Âú×ã3an+1-an=0£¬bnÊÇanÓëan+1µÄµÈ²îÖÐÏÇóÊýÁÐ{bn}µÄÇ°nÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸