精英家教网 > 高中数学 > 题目详情
(1)求右焦点坐标是(2,0),且经过点(-2,-)的椭圆C的标准  方程;
(2)对(1)中的椭圆C,设斜率为1的直线l交椭圆CAB两点,AB的中点为M,证明:当直线l平行移动时,动点M在一条过原点的定直线上;
(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.
(1) 椭圆的标准方程为+=1.
(1)由题中条件,设椭圆的标准方程为+=1,ab>0,
∵右焦点为(2,0),∴a2=b2+4,
即椭圆的方程为+=1.
∵点(-2,-)在椭圆上,∴+=1.
解得b2=4或b2=-2(舍),
由此得a2=8,即椭圆的标准方程为+=1.
(2)设直线l的方程为y=x+m,与椭圆C的交点为A(x1,y1)、B(x2,y2),
则由得12x2+16mx+8m2-32=0,
即3x2+4mx+2m2-8=0.
Δ>0,∴m2<12,即-2m<2.
x1+x2=-,y1+y2=x1+m+x2+m=m,
AB中点M的坐标为(-m,).
∴线段AB的中点M在过原点的直线x+2y=0上.
(3)如下图,作两条平行直线分别交椭圆于点AB和点CD,并分别取ABCD的中点MN,连结直线MN;又作两条平行直线(与前两条直线不平行)分别交椭圆于点A1B1和点C1D1,并分别取A1B1C1D1的中点M1N1,连结直线M1N1,那么直线MNM1N1的交点O即为椭圆中心 .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,点P是椭圆=1上的一点,F1和F2是焦点,且∠F1PF2=30°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=x+1被椭圆x2+2y2=4截得的弦的中点坐标是             (    )
A.(,-)B.(,-)C.(-)D.(-)翰林汇

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

AB为过椭圆+=1中心的弦,F(c,0)为椭圆的右焦点,则△AFB面积的最大值是
A.b2B.ab
C.acD.bc

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆+ =1的焦点为F1F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆a2x2+y2=a2(0<a<1)上离顶点A(0,a)距离最远的点恰好是另一个顶点A′(0,   -a),则a的取值范围是
A.(,1)B.[,1)
C.(0,)D.(0,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆分别为其左、右焦点,为椭圆上任意一点,,求的最大值及取得最大值时点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点(m,n)在椭圆8x2+3y2=24上,则2m+4的取值范围是(    )
A.[4-2,4+2B.[4-,4+
C.[4-2,4+2D.[4-,4+

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆中心在原点,一个焦点是F(-2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是                 

查看答案和解析>>

同步练习册答案