精英家教网 > 高中数学 > 题目详情
已知A、B、C、D是空间不共面的四点,求证:直线AB与直线CD既不平行又不相交.

证明:若AB与CD平行,则A、B、C、D四点共面.

这与A、B、C、D不共面矛盾.

若AB与CD相交,则A、B、C、D四点共面,这与A、B、C、D四点不共面矛盾.

综上,可知AB与CD既不平行又不相交.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C,D是抛物线y2=4x上四点,F是焦点,且
FA
+
FB
+
FC
=
0
,则|
FA
|+|
FB
|+|
FC
|
=(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知a、b、c、d是公比为2的等比数列,则
2a+b
2c+d
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C、D是球面上四点,若AB=AC=
2
,BD=DC=CB=2,二面角A-BC-D的平面角等于150°,则该球的表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的表面积为(  )

查看答案和解析>>

同步练习册答案