精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4

分析 (1)求出函数的导数,计算f(2),f′(2),求出切线方程即可;(2)求出函数f(x)的极值点,根据等差数列的性质求出x4即可.

解答 解:(1)当a=1,b=2时,因为f′(x)=(x-1)(3x-5),
故f′(2)=1,又f(2)=0,
所以f(x)在点(2,0)处的切线方程为y=x-2.
(2)证明:因为f′(x)=3(x-a)(x-$\frac{a+2b}{3}$),
由于a<b,故a<$\frac{a+2b}{3}$,
所以f(x)的两个极值点为x=a或x=$\frac{a+2b}{3}$,
不妨设x1=a,x2=$\frac{a+2b}{3}$,
因为x3≠x1,x3≠x2,且x3是f(x)的零点,故x3=b,
又因为$\frac{a+2b}{3}$-a=2(b-$\frac{a+2b}{3}$),x4=$\frac{1}{2}$(a+$\frac{a+2b}{3}$)=$\frac{2a+b}{3}$,
此时a,$\frac{2a+b}{3}$,$\frac{a+2b}{3}$,b依次成等差数列,
所以存在实数x4满足题意,且x4=$\frac{2a+b}{3}$.

点评 本题考查了切线方程问题,考查导数的应用以及等差数列的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心C在直线l上;若动点M满足:|MA|=2|MO|,且M的轨迹与圆C有公共点.求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{{m}^{2}+12}$-$\frac{{y}^{2}}{4-{m}^{2}}$=1的焦距是(  )
A.4B.6C.8D.与m有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{mx-6}{{{x^2}+n}}$的图象在点P(-1,f(-1))处的切线方程为x+2y+5=0,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|2x+1|+|3x-2|,且不等式f(x)≤5的解集为$\{x|-\frac{4a}{5}≤x≤\frac{3a}{5}\},a,b∈R$.
(1)求a,b的值;
(2)对任意实数x,都有|x-a|+|x+b|≥m2-3m成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f1(x)=sin x+cos x,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),则f1($\frac{π}{2}$)+f2($\frac{π}{2}$)+…+f2017($\frac{π}{2}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosA=$\frac{1}{3}$.求sin(B+C)的值(  )
A.$\frac{{2\sqrt{2}}}{3}$B.-$\frac{1}{2}$C.0D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.把$-sinα+\sqrt{3}cosα$化成Asin(α+φ)(A>0,φ∈(0,2π))的形式为2sin($α+\frac{2π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,A,B,C三个开关控制着1,2,3,4号四盏灯.若开关A控制着2,3,4号灯(即按一下开关A,2,3,4号灯亮,再按一下开关A,2,3,4号灯熄灭),同样,开关B控制着1,3,4号灯,开关C控制着1,2,4号灯.开始时,四盏灯都亮着,那么下列说法正确的是(  )
A.只需要按开关A,C可以将四盏灯全部熄灭
B.只需要按开关B,C可以将四盏灯全部熄灭
C.按开关A,B,C可以将四盏灯全部熄灭
D.按开关A,B,C无法将四盏灯全部熄灭

查看答案和解析>>

同步练习册答案