精英家教网 > 高中数学 > 题目详情

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

【答案】(1)

(2)有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

【解析】

1)由列联表可知调查的500位老年人中有位需要志愿者提供帮助,两个数据

求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,

代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出

有多大把握说该地区的老年人是否需要帮助与性别有关.

(1)由题得该地区老年人中,需要志愿者提供帮助的老年人的比例为.

(2)

由于,所以有的把握认为该地区的老年人是否需要帮助与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】南康某服装厂拟在年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元满足.已知年生产该产品的固定投入为万元,每生产万件该产品需要再投入万元.厂家将每件产品的销售价格定为每件产品年平均成本的倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).

1)将年该产品的利润万元表示为年促销费用万元的函数;

2)该服装厂年的促销费用投入多少万元时,利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,点是动点,且直线和直线的斜率之积为.

(1)求动点的轨迹方程;

(2)设直线与(1)中轨迹相切于点,与直线相交于点,判断以为直径的圆是否过轴上一定点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差d0,则下列四个命题:

①数列是递增数列; ②数列是递增数列;

③数列是递增数列; ④数列是递增数列.

其中正确命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,abc分别是角ABC的对边,S是该三角形的面积,且

1)求角A的大小;

2)若角A为锐角, ,求边BC上的中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,ABC是等边三角形,ABADCBCD,点PAC的中点,记BPDABD的面积分别为,二面角ABDC的大小为

证明:(Ⅰ)平面ACD平面BDP

(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三全体名学生中随机抽取了名学生的体检表,并得到如图所示的频率分布直方图

(Ⅰ)若直方图中后四组的频数成等差数列,计算高三全体学生视力在以下的人数,并估计这名学生视力的中位数(精确到);

(Ⅱ)学习小组发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体成绩名次在前名和后名的学生进行了调查,部分数据如表1,根据表1及临界表2中的数据,能否在犯错误的概率不超过的前提下认为视力与学习成绩有关系?

年段名次

是否近视

近 视

不近视

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.84

5.024

6.635

7.879

10.83

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年元旦期间,某运动服装专卖店举办了一次有奖促销活动,消费每超过400元均可参加1次抽奖活动,抽奖方案有两种,顾客只能选择其中的一种.

方案一:顾客转动十二等分且质地均匀的圆形转盘(如图),转盘停止转动时指针指向哪个扇形区域,则顾客可直接获得该区域对应面额(单位:元)的现金优惠,且允许顾客转动3次.

方案二:顾客转动十二等分且质地均匀的圆形转盘(如图〕,转盘停止转动时指针若指向阴影部分,则未中奖,若指向白色区域,则顾客可直接获得40元现金,且允许顾客转动3次.

(1)若两位顾客均获得1次抽奖机会,且都选择抽奖方案一,试求这两位顾客均获得180元现金优惠的概率;

(2)若某顾客恰好获得1次抽奖机会.

①试分别计算他选择两种抽奖方案最终获得现金奖励的数学期望;

②从概率的角度比较①中该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法错误的是

A. 的最小值点

B. 函数有且只有1个零点

C. 存在正实数,使得恒成立

D. 对任意两个不相等的正实数,若,则

查看答案和解析>>

同步练习册答案