精英家教网 > 高中数学 > 题目详情

【题目】已知函数,设直线分别是曲线的两条不同的切线;

(1)若函数为奇函数,且当时,有极小值为-4;

(i)求的值;

(ii)若直线亦与曲线相切,且三条不同的直线交于点,求实数m的取值范围;

(2)若直线,直线与曲线切于点B且交曲线于点D,直线与曲线切于点C且交曲线于点A,记点的横坐标分别为,求的值.

【答案】(1) ; (2).

【解析】

1根据奇函数求得;又,求得假设切点和切线方程,根据极大值点为可确定一条切线为;将代入切线方程可得:,从而可得的两根为,构造函数,结合图像求得的范围;(2)根据可得,从而;将切线代入求解出,从而得到.

(1) 是奇函数,且

,即

而当时有极小值

经检验满足题意,则

是曲线上的一点

知:

点的切线方程为:

消去即得:

由此切线方程形式可知:过某一点的切线最多有三条;

又由奇函数性质可知:点是极大值点

从而是一条切线且过点

再设另两条切线的切点为,其中

则可令切线

代入的方程中

化简可得:

从而有:

是方程的两根

构造函数:

得:

,结合图象:

可得:实数的取值范围是:

(2)令;由

可得:

,化简可得:,即

将切线的方程代入中并化简得:

,即

;同理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点AB.

)求椭圆M的方程;

)若,求 的最大值;

)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.C,D和点 共线,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是圆x2+y24上的动点,P点在x轴上的射影是D,点M满足

(Ⅰ)求动点M的轨迹C的方程

(Ⅱ)设AB是轨迹C上的不同两点,点E(﹣40),且满足,若λ[1),求直线AB的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为 曲线的极坐标方程为交于点.

1)写出曲线的普通方程及直线的直角坐标方程,并求

2)设为曲线上的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线C交于两点.

1)求直线的普通方程和曲线C的直角坐标方程;

2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四面体中,,且两两互相垂直,点的中心.

1)求二面角的大小(用反三角函数表示);

2)过,垂足为,求绕直线旋转一周所形成的几何体的体积;

3)将绕直线旋转一周,则在旋转过程中,直线与直线所成角记为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 ,过点的直线的参数方程为为参数),交于两点

(1) 求的直角坐标方程和的普通方程;

(2) 若,,成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1234.

1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;

2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率

查看答案和解析>>

同步练习册答案