精英家教网 > 高中数学 > 题目详情
1.《九章算术》是我国古代一部重要的数学著作,书中给出了如下问题:“今有良马与驽马发长安,至齐,齐去长安一千一百二十五里.良马初日行一百零三里,日增一十三里.驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢?”其大意为:“现有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是1125里.良马第一天行103里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇?”在这个问题中两马从出发到相遇的天数为9.

分析 利用等差数列的求和公式与不等式的解法即可得出.

解答 解:由题意知,良马每日行的距离成等差数列,
记为{an},其中a1=103,d=13;
驽马每日行的距离成等差数列,
记为{bn},其中b1=97,d=-0.5;
设第m天相逢,则a1+a2+…+am+b1+b2+…+bm
=103m+$\frac{m(m-1)}{2}$×13+97m+$\frac{m(m-1)}{2}$×(-0.5)
=200m+$\frac{m(m-1)}{2}$×12.5≥2×1125,
化为m2+31m-360≥0,
解得m$≥\frac{-31+\sqrt{2401}}{2}$,取m=9.
故答案为:9

点评 本题考查了等差数列的通项公式与求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.据调查分析,若干年内某产品关税与市场供应量P的关系近似地满足:y=P(x)=2${\;}^{(1-kt)(x-b)^{2}}$,(其中,t为关税的税率,且t∈[0,$\frac{1}{2}$),x为市场价格,b,k为正常数),当t=$\frac{1}{8}$时的市场供应量曲线如图.
(Ⅰ)根据图象求b,k的值;
(Ⅱ)若市场需求量为Q(x)=2${\;}^{11-\frac{t}{2}}$,当p=Q时的市场价格称为市场平衡价格,当市场平衡价格保持在10元时,求税率t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),λμ=$\frac{1}{16}$,则该双曲线的离心率为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{3\sqrt{5}}{5}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(1,0,1),$\overrightarrow{b}$=(0,1,1),向量$\overrightarrow{a}$-k$\overrightarrow{b}$与$\overrightarrow{a}$垂直,k为实数.
(I)求实数k的值;
(II)记$\overrightarrow{c}$=k$\overrightarrow{a}$,求向量$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{c}$-$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{x}{{e}^{x}}$,则f′(x)=(  )
A.$\frac{x-1}{{e}^{x}}$B.$\frac{x+1}{{e}^{x}}$C.$\frac{-x-1}{{e}^{x}}$D.$\frac{1-x}{{e}^{x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,输出的A值为(  )
A.7B.15C.31D.63

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.${(2x-\frac{1}{x})^4}$展开式中的常数项是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=$\left\{\begin{array}{l}{x+2,x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,则f(f(-2))=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知sinθ+cosθ=2sinα,sin2θ=2sin2β,则(  )
A.cosβ=2cosαB.cos2β=2cos2αC.cos2β=2cos2αD.cos2β=-2cos2α

查看答案和解析>>

同步练习册答案